论文标题

顶点代数构建用于扭曲仿射的模块type $ a_ {2l}^{(2)} $的代数

Vertex algebraic construction of modules for twisted affine Lie algebras of type $A_{2l}^{(2)}$

论文作者

Takenaka, Ryo

论文摘要

令$ \ tilde {\ mathfrak {g}} $为类型$ a_ {2l}^{(2)} $的Aggine Lie代数。可集成的最高权重$ \ tilde {\ mathfrak {g}} $ - 模块$ l(kλ_0)$称为标准$ \ tilde {\ mathfrak {\ mathfrak {g}} $ - 模块是由twisted module $ v_l^t $ for lattece vertex pertex pertex pertex pertetex pertex pertetra al a $ v $ v v的启动产品实现的。通过使用此类顶点代数结构,我们构建了标准模块的基础,其主要子空间和偏僻的空间。结果,我们获得了它们的性格公式,并解决了Arxiv中所述的真空模块的猜想:Math/0102113。

Let $\tilde{\mathfrak{g}}$ be the affine Lie algebra of type $A_{2l}^{(2)}$. The integrable highest weight $\tilde{\mathfrak{g}}$-module $L(kΛ_0)$ called the standard $\tilde{\mathfrak{g}}$-module is realized by a tensor product of the twisted module $V_L^T$ for the lattice vertex operator algebra $V_L$. By using such vertex algebraic construction, we construct bases of the standard module, its principal subspace and the parafermionic space. As a consequence, we obtain their character formulas and settle the conjecture for vacuum modules stated in arXiv:math/0102113.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源