论文标题

在对不混溶的粘性液体池的影响期间,液滴表面火山口的机制

On the mechanics of droplet surface crater during impact on immiscible viscous liquid pool

论文作者

Roy, Durbar, M, Sophia, Basu, Saptarshi

论文摘要

我们研究了对不混溶的粘性液体池的降低影响,并使用实验和理论分析研究了液滴表面陨石坑的形成。我们将空气陨石坑的形成归因于由于粘性阻力引起的液滴快速减速。对外部冲动减速力的液滴反应在暴露于空气形成毛细管波的表面上诱导振荡模式,这些毛细管波会叠加以形成各种形状和尺寸的空气火山口。我们引入了一个非二维参数($γ$),即阻力与作用在液滴上的毛细力的比率。我们表明$γ$与毛细管数直接成正比。我们表明,形成显着深度的空气坑的液滴具有$γ> 1 $。此外,我们证明了Legendre多项式可以在局部近似中央空气火山口射流剖面。我们还破译说,空气陨石坑响应时间量表($ t $)随着影响韦伯数字的平方根而变化($ t {\ sim}我们^{1/2} $)。此外,我们基于特征值问题将局部液滴响应概括为低影响能量的全局响应模型。我们用动态接触线表示穿透性滴度作为约束的瑞利跌落问题。使用Indiscid液滴变形模型分析空气水接口动力学,用于小变形幅度。局部和全局液滴响应理论彼此符合,并描绘了在Legendre多项式基础上可以将变形曲线表示为特征模的线性叠加。我们发现,由于存在这种动态接触线,不混溶的冲击系统中的液滴响应与可混杂的冲击系统不同。

We study drop impacts on immiscible viscous liquid pool and investigate the formation of droplet surface craters using experimental and theoretical analysis. We attribute the formation of air craters to the rapid deceleration of the droplet due to viscous drag force. The droplet response to the external impulsive decelerating force induces oscillatory modes on the surface exposed to the air forming capillary waves that superimpose to form air craters of various shapes and sizes. We introduce a non-dimensional parameter ($Γ$), that is, the ratio of drag force to the capillary force acting on the droplet. We show that $Γ$ is directly proportional to the capillary number. We show that droplets forming air craters of significant depths have $Γ>1$. Further, we demonstrate that Legendre polynomials can locally approximate the central air crater jet profile. We also decipher that the air crater response time scale ($T$) varies as the square root of impact Weber number ($T{\sim}We^{1/2}$). Further, we generalize the local droplet response with a global response model for low-impact energies based on an eigenvalue problem. We represent the penetrating drop as a constrained Rayleigh drop problem with a dynamic contact line. The air-water interface dynamics is analyzed using an inviscid droplet deformation model for small deformation amplitudes. The local and global droplet response theory conforms with each other and depicts that the deformation profiles could be represented as a linear superposition of eigenmodes in Legendre polynomial basis. We unearth that the droplet response in an immiscible impact system differs from the miscible impact systems due to the presence of such a dynamic contact line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源