论文标题
使用神经领域的记忆有效的动态图像重建方法
A Memory-Efficient Dynamic Image Reconstruction Method using Neural Fields
论文作者
论文摘要
动态成像对于分析各种生物系统和行为至关重要,但面临两个主要挑战:数据不完整和计算负担。对于许多成像系统,高帧速率和短时间的收购时间需要严重的底漆,从而导致数据不完整。然后,多个图像可以与数据兼容,因此需要特殊的技术(正则化)以确保重建的唯一性。对于需要高分辨率的三维动态成像应用,计算和内存需求尤为负担。在对象的时空特征中利用冗余是解决这两个挑战的关键。这项贡献研究了神经场或隐式神经表示,以模拟受欢迎的动态对象。神经场是一类特定的神经网络,它们代表动态对象是空间和时间的连续函数,从而避免在每个时间范围内存储完整分辨率图像的负担。因此,神经场表示将图像重建问题减少到通过非线性优化问题估算网络参数(训练)。训练后,可以在时空的任意位置进行神经场进行评估,从而可以对物体进行高分辨率渲染。所提出方法的关键优势是,神经领域会自动学习和利用所享受的对象中的冗余,以使重建正规化并显着降低内存存储要求。通过应用于严重不足的圆形伦敦变换数据的动态图像重建的应用,说明了所提出的框架的可行性。
Dynamic imaging is essential for analyzing various biological systems and behaviors but faces two main challenges: data incompleteness and computational burden. For many imaging systems, high frame rates and short acquisition times require severe undersampling, which leads to data incompleteness. Multiple images may then be compatible with the data, thus requiring special techniques (regularization) to ensure the uniqueness of the reconstruction. Computational and memory requirements are particularly burdensome for three-dimensional dynamic imaging applications requiring high resolution in both space and time. Exploiting redundancies in the object's spatiotemporal features is key to addressing both challenges. This contribution investigates neural fields, or implicit neural representations, to model the sought-after dynamic object. Neural fields are a particular class of neural networks that represent the dynamic object as a continuous function of space and time, thus avoiding the burden of storing a full resolution image at each time frame. Neural field representation thus reduces the image reconstruction problem to estimating the network parameters via a nonlinear optimization problem (training). Once trained, the neural field can be evaluated at arbitrary locations in space and time, allowing for high-resolution rendering of the object. Key advantages of the proposed approach are that neural fields automatically learn and exploit redundancies in the sought-after object to both regularize the reconstruction and significantly reduce memory storage requirements. The feasibility of the proposed framework is illustrated with an application to dynamic image reconstruction from severely undersampled circular Radon transform data.