论文标题

CENN:一个完全卷积的神经网络,用于现实的微波天空模拟中的CMB恢复

CENN: A fully convolutional neural network for CMB recovery in realistic microwave sky simulations

论文作者

Casas, J. M., Bonavera, L., González-Nuevo, J., Baccigalupi, C., Cueli, M. M., Crespo, D., Goitia, E., Santos, J. D., Sánchez, M. L., de Cos, F. J.

论文摘要

组件分离是通常通过考虑多频信息来提取天体物理图中的发射源的过程。为将来的CMB实验开发更可靠的方法来开发更可靠的方法。我们旨在开发一种基于称为宇宙微波背景提取神经网络(CENN)的完全卷积神经网络的新方法,以便以总强度提取CMB信号。使用的频率是普朗克通道143、217和353 GHz。我们以三个纬度间隔验证网络:lat1 = 0^{\ circ} <b <5^{\ circ},lat2 = 5^{\ circ} <b <30^{\ circ}和lat3 = 30^{\ circ} {\ circ} {\ circ} <b <90^{\ circ}对于训练,我们以256个像素的斑块形式进行逼真的模拟,其中包含CMB,Dust,CIB和PS排放,Sunyaev-Zel'Dovich效果和仪器噪声。验证网络后,我们比较输入图和输出图的功率谱。我们以每个纬度间隔和所有天空分析了残差的功率谱,我们研究了在小尺度上处理高污染的模型的性能。我们获得了一个功率谱,其误差为13 {\ pm}113μk^2,用于多孔,高于4000。对于lat1,80 {\ pm}60μk^2,用于LAT1,80 {\ pm}30μk^2,用于LAT2和LAT2和30 {\ pm}20μk^2 for Lat3。对于所有天空,我们获得20 {\ pm}10μk^2。我们在小尺度上具有强污染的贴片中验证网络,获得了50 {\ pm}120μk^2的误差和40 {\ pm}10μk^2的残差。因此,在将来的CMB实验中,完全卷积神经网络是执行组件分离的有前途的方法。特别是,CENN在大小尺度上的银河系和点源前景的不同污染水平都可靠。

Component separation is the process with which emission sources in astrophysical maps are generally extracted by taking multi-frequency information into account. It is crucial to develop more reliable methods for component separation for future CMB experiments. We aim to develop a new method based on fully convolutional neural networks called the Cosmic microwave background Extraction Neural Network (CENN) in order to extract the CMB signal in total intensity. The frequencies used are the Planck channels 143, 217 and 353 GHz. We validate the network at all sky, and at three latitude intervals: lat1=0^{\circ}<b<5^{\circ}, lat2=5^{\circ}<b<30^{\circ} and lat3=30^{\circ}<b<90^{\circ}, without using any Galactic or point source masks. For training, we make realistic simulations in the form of patches of area 256 pixels, which contain the CMB, Dust, CIB and PS emissions, Sunyaev-Zel'dovich effect and the instrumental noise. After validate the network, we compare the power spectrum from input and output maps. We analyse the power spectrum from the residuals at each latitude interval and at all sky and we study the performance of our model dealing with high contamination at small scales. We obtain a power spectrum with an error of 13{\pm}113 μK^2 for multipoles up to above 4000. For residuals, we obtain 700{\pm}60 μK^2 for lat1, 80{\pm}30 μK^2 for lat2 and 30{\pm}20 μK^2 for lat3. For all sky, we obtain 20{\pm}10 μK^2. We validate the network in a patch with strong contamination at small scales, obtaining an error of 50{\pm}120 μK^2 and residuals of 40{\pm}10 μK^2. Therefore, fully convolutional neural networks are promising methods to perform component separation in future CMB experiments. Particularly, CENN is reliable against different levels of contamination from Galactic and point source foregrounds at both large and small scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源