论文标题
红移空间中21厘米宇宙学的有效偏置扩展
An Effective Bias Expansion for 21 cm Cosmology in Redshift Space
论文作者
论文摘要
从电离时期对21cm信号的近乎未来的检测将为探测潜在的宇宙学提供独特的机会,前提是可以精确提取此类宇宙学信息。为此,我们进一步开发了有效的田间理论(EFT)启发的技术,用于在电离时期为21厘米亮度温度场启发,并结合了重新归一化的偏置和红移空间扭曲的处理。值得注意的是,我们确认在红移空间中,21厘米亮度的度量,例如功率谱,应具有不可约的贡献,这些贡献缺乏偏置系数,因此包含有关宇宙密度场的直接无天体物理学的信息;在这项工作中,我们将研究这种效果超出线性顺序。为了验证我们的理论处理,我们将预测的EFT傅立叶空间形状拟合到电场水平上的电源仿真的三个套件,在该田间水平上,大量模式阻止了过度拟合。我们发现在21cm功率谱之间的EFT拟合和模拟范围内的模拟$ k \ lyseSim 0.8 $ h/mpc和中性分数$ x_ \ mathrm {hi} \ gtrsim 0.4 $之间,我们发现在21厘米的功率谱之间达成了一致性的达成共识,这是可以通过氢化层次化的(未来)和未来的实验。 EFT描述21厘米信号的能力扩展到具有不同天体物理处方的模拟以及与暗物质相互作用的模拟。
A near-future detection of the 21cm signal from the epoch of reionization will provide unique opportunities to probe the underlying cosmology, provided that such cosmological information can be extracted with precision. To this end, we further develop effective field theory (EFT) inspired techniques for the 21cm brightness temperature field during the epoch of reionization, incorporating renormalized bias and a treatment of redshift space distortions. Notably, we confirm that in redshift space, measures of the 21cm brightness, e.g the power spectrum, should have irreducible contributions that lack a bias coefficient and therefore contain direct, astrophysics-free information about the cosmological density field; in this work, we study this effect beyond linear order. To validate our theoretical treatment, we fit the predicted EFT Fourier-space shapes to the THESAN suite of hydrodynamical simulations of reionization at the field level, where the considerable number of modes prevents overfitting. We find agreement at the level of a few percent between the 21cm power spectrum from the EFT fits and simulations over the wavenumber range $k \lesssim 0.8$ h/Mpc and neutral fraction $x_\mathrm{HI} \gtrsim 0.4$, which is imminently measurable by the Hydrogen Epoch of Reionization Array (HERA) and future experiments. The ability of the EFT to describe the 21cm signal extends to simulations that have different astrophysical prescriptions for reionization as well as simulations with interacting dark matter.