论文标题

轻巧CNN的稀疏定向滤波器词典插图

Blind Image Inpainting with Sparse Directional Filter Dictionaries for Lightweight CNNs

论文作者

Schmalfuss, Jenny, Scheurer, Erik, Zhao, Heng, Karantzas, Nikolaos, Bruhn, Andrés, Labate, Demetrio

论文摘要

基于深度学习体系结构的盲目介绍算法在近年来表现出色,通常在图像质量和运行时间方面都优于基于模型的方法。然而,神经网络策略通常缺乏理论解释,这与理解的基于基于模型的理论理解的方法形成鲜明对比。在这项工作中,我们通过将理论上创建的概念从变换域方法和稀疏近似值整合到基于CNN的基于CNN的方法中来利用这两种方法的优势。为此,我们提出了一种新的策略,以学习卷积内核,该策略应用了专门设计的滤波器词典,其元素与可训练的重量线性结合。数值实验证明了这种方法的竞争力。我们的结果不仅表明与传统的CNN相比,不仅提高了覆盖质量,而且在轻量级网络设计中的网络收敛速度明显更快。

Blind inpainting algorithms based on deep learning architectures have shown a remarkable performance in recent years, typically outperforming model-based methods both in terms of image quality and run time. However, neural network strategies typically lack a theoretical explanation, which contrasts with the well-understood theory underlying model-based methods. In this work, we leverage the advantages of both approaches by integrating theoretically founded concepts from transform domain methods and sparse approximations into a CNN-based approach for blind image inpainting. To this end, we present a novel strategy to learn convolutional kernels that applies a specifically designed filter dictionary whose elements are linearly combined with trainable weights. Numerical experiments demonstrate the competitiveness of this approach. Our results show not only an improved inpainting quality compared to conventional CNNs but also significantly faster network convergence within a lightweight network design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源