论文标题
球状簇M4中多个恒星种群的星形学
Asteroseismology of the multiple stellar populations in the Globular Cluster M4
论文作者
论文摘要
我们根据K2任务收集的数据,对球形簇(GC)M4中的恒星进行了新的小星震分析。我们报告了37颗恒星,32个红色巨型分支(RGB)和6个红色水平分支(RHB)恒星中太阳能振荡的检测,这是GC最新研究中此类研究的最大样本。结合了来自星空学和多波段光度法的信息,我们估计了目标的质量和半径。我们的估计与独立来源一致,这是对低金属性制度中星星学的关键验证。 由于M4是一个旧的GC,它具有多个恒星种群,在光元素丰度和氦质量分数方面有所不同。这会在RGB沿RGB的种群之间产生质量差异,在M4的情况下估计为$ 0.017 m_ \ odot $。有了这些信息,我们可以分配人口成员资格并估计恒星人群的平均质量,但是当前的不确定性不允许我们解决这种质量差异。但是,RGB和HB星的人口成员资格和地震数据使我们能够评估集群中第一代恒星的RGB沿RGB的综合质量损失。我们获得$ \rmΔm= 0.227 \ pm0.028 m_ \ odot $,与独立估计非常吻合。最后,我们观察到RHB恒星中存在具有统计学意义的质量温度梯度。这代表了该理论预测的颜色 - 温度质量相关性的第一个直接,独立的观察。
We present a new asteroseismic analysis of the stars in the Globular Cluster (GC) M4 based on the data collected by the K2 mission. We report the detection of solar-like oscillation in 37 stars, 32 red giant branch (RGB) and 6 red horizontal branch (rHB) stars, the largest sample for this kind of study in GC up to date. Combining information from asteroseismology and multi-band photometry we estimate both the masses and the radii of our targets. Our estimates are in agreement with independent sources, serving as a crucial verification of asteroseismology in the low metallicity regime. As M4 is an old GC, it hosts multiple stellar populations differing in light-element abundances and in helium mass fraction. This generates a mass difference between the populations along the RGB, which in the case of M4 is estimated to be $0.017 M_\odot$. With this wealth of information we can assign population membership and estimate the average mass of the stellar populations, but the current uncertainties do not allow us to resolve this mass difference. The population membership and the seismic data of RGB and HB stars, allow us, however, to assess the integrated mass loss along the RGB of the first generation stars in the cluster. We obtain $\rm ΔM=0.227 \pm0.028 M_\odot$, in good agreement with independent estimates. Finally, we observe the presence of a statistically significant mass-temperature gradient in the rHB stars. This represents the first direct, model-independent observation of the colour-temperature-mass correlation predicted by the theory.