论文标题
关于Eliahou和Villarrear的猜想,关于共同图形的投影维度
On the Eliahou and Villarreal conjecture about the projective dimension of co-chordal graphs
论文作者
论文摘要
令$ i(g)$成为图形$ g $的边缘理想,$ | v(g)| = n $和$ r = \ mathbb {k} [x \ mid x \ in v(g)] $是$ n $变量的多项式戒指。在本文中,我们对Eliahou和Villarreal的猜想感兴趣,该猜想指出,$ \ text {pdim}(r/i(g))= \ max_ {1 \ leq i \ leq i \ leq n} \ lest \ left \ left \ left \ left {\ text {deg} _ {g} _ {g} _ {__i)\ right text \ right right tectect and $ right right y $ g $ n $ n $ n $ n $ n $ n $ s $我们表明,这个猜想一般不正确。实际上,我们表明$ \ text {pdim}(r/i(g))$和$ \ max_ {1 \ leq i \ leq i \ leq n} \ left \ left \ {\ text {deg} _ {g} _ {g}(x_i)\ right \} $之间的差异。对于任何图形$ g $,我们证明$ \ max_ {1 \ leq i \ leq n} \ left \ {\ text {deg} _ {g}(x_i)(x_i)\ right \} \ leq \ leq \ leq \ text {pdim}(pdim}(r/i(g))$。对于正整数的非插入顺序$(d_1,d_2,\ dots,d_q)$,我们定义$(d_1,d_2,\ dots,d_q)$ - 树图。我们表明,这类树的补充的独立性复合物是顶点分解和准森林。最后,我们证明,当$ g $的补充是$(d_1,d_2,\ dots,d_q)$ - 树或$ g $时,猜想是有效的。据我们所知,本文中的结果概括了猜想是正确的所有现有图形类别。
Let $I(G)$ be the edge ideal of a graph $G$ with $|V(G)|=n$ and $R=\mathbb{K}[x\mid x\in V(G)]$ be a polynomial ring in $n$ variables over a field $\mathbb{K}$. In this paper we are interested in a conjecture of Eliahou and Villarreal which states that $\text{pdim}(R/I(G))=\max_{1\leq i \leq n}\left\{\text{deg}_{G}(x_i)\right\}$ when $G$ is connected and co-chordal. We show that this conjecture is not true in general. In fact we show that the difference between $\text{pdim}(R/I(G))$ and $\max_{1\leq i \leq n}\left\{\text{deg}_{G}(x_i)\right\}$ is not necessarily bounded. For any graph $G$ we prove that $\max_{1\leq i \leq n}\left\{\text{deg}_{G}(x_i)\right\}\leq \text{pdim}(R/I(G))$. For a non-increasing sequence of positive integers $(d_1,d_2,\dots,d_q)$, we define the $(d_1,d_2,\dots,d_q)$-tree graphs. We show that the independence complex of the complements of these type of trees is vertex decomposable and quasi-forest. Finally we show that the conjecture is valid when the complement of $G$ is a $(d_1,d_2,\dots,d_q)$-tree or $G$ has a full-vertex. To our knowledge the results in this paper generalise all the existing classes of graphs for which the conjecture is true.