论文标题
Sobolev加速和通过梯度下降学习椭圆方程的统计最佳性
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
论文作者
论文摘要
在本文中,我们研究了使用一般目标函数类别的嘈杂观测来解决梯度下降的Sobolev规范的统计限制。我们的目标功能类别包括用于内核回归的Sobolev培训,深层RITZ方法(DRM)和物理学知情的神经网络(PINN),用于解决椭圆形偏微分方程(PDES)作为特殊情况。我们考虑使用合适的重现Hilbert空间和通过内核积分运算符的定义对问题硬度的连续参数化来考虑模型的潜在无限二维参数化。我们证明,此目标函数上的梯度下降也可以实现统计最佳性,并且数据的最佳通过数随样本量增加而增加。基于我们的理论,我们解释了使用Sobolev Narm作为训练的目标函数的隐含加速度,推断DRM的最佳时期数量在数据大小和任务的硬度增加时都大于PINN的数量,尽管DRM和PINN都可以实现统计最佳。
In this paper, we study the statistical limits in terms of Sobolev norms of gradient descent for solving inverse problem from randomly sampled noisy observations using a general class of objective functions. Our class of objective functions includes Sobolev training for kernel regression, Deep Ritz Methods (DRM), and Physics Informed Neural Networks (PINN) for solving elliptic partial differential equations (PDEs) as special cases. We consider a potentially infinite-dimensional parameterization of our model using a suitable Reproducing Kernel Hilbert Space and a continuous parameterization of problem hardness through the definition of kernel integral operators. We prove that gradient descent over this objective function can also achieve statistical optimality and the optimal number of passes over the data increases with sample size. Based on our theory, we explain an implicit acceleration of using a Sobolev norm as the objective function for training, inferring that the optimal number of epochs of DRM becomes larger than the number of PINN when both the data size and the hardness of tasks increase, although both DRM and PINN can achieve statistical optimality.