论文标题
预测HCN,HCO +,多转变CO和星形星系的灰尘发射:限制当地螺旋星系的已解决气体和灰尘磁盘的特性
Predicting HCN, HCO + , multi-transition CO, and dust emission of star-forming galaxies: Constraining the properties of resolved gas and dust disks of local spiral galaxies
论文作者
论文摘要
ISM是缩放关系后的湍流,多相和多尺度介质。银河气体磁盘的分析模型需要考虑星际介质的多尺度和多相性质。它们可以描述为垂直静水平衡中的块状恒星积聚磁盘,平面压力平衡气态和恒星磁盘的重力。通过将银河缩放关系应用于冷原子和分子气相,可以考虑ISM湍流。通过超新星的能量注入来维持湍流。通过在给定的空间尺度上测定气体质量分数,可以计算湍流加热和线冷却之间的平衡气体温度,分子丰度和分子线发射。将IR,H {\ sc I},CO,HCN和HCO $^+$排放的产生模型径向曲线与17个本地螺旋星系的事物,Heracles,Empire,Sings和Galex观察结果进行了比较。 Toomre参数测量了针对恒星形成(云塌陷)的稳定性,超过了大量星系的内部磁盘中的统一性。在两个星系中,它也超过了外磁盘中的统一性。因此,在螺旋星系中$ q _ {\ rm tot} = 1 $并非无处不在。模型气速度色散与可用的观察到的H {\ sc i}速度分散相一致。在我们的型号中,HCN和HCO $^+$在相对较低的密度气体中已经可以检测到($ \ sim 1000 $ 〜cm $^{ - 3} $)。 CO和HCN转化因子以及分子气体耗竭时间得出。两种转换因子都与文献中发现的值一致。在大型星系中,粘性的时间表大大超过了星形的时间表,而粘性时间表比$ \ rm {rm {rm {rm {rm}〜\ sim〜2〜2〜 \ rm {rm} _ {\ rm d} $在$ \ rm {rm {rm {rm {rm}〜\ sim〜2〜 \ rm d} $中小的时间小。
The ISM is a turbulent, multi-phase, and multi-scale medium following scaling relations. Analytical models of galactic gaseous disks need to take into account the multi-scale and multi-phase nature of the interstellar medium. They can be described as clumpy star-forming accretion disks in vertical hydrostatic equilibrium, with the mid-plane pressure balancing the gravity of the gaseous and stellar disk. ISM turbulence is taken into account by applying Galactic scaling relations to the cold atomic and molecular gas phases. Turbulence is maintained through energy injection by supernovae. With the determination of the gas mass fraction at a given spatial scale, the equilibrium gas temperature between turbulent heating and line cooling, the molecular abundances, and the molecular line emission can be calculated. The resulting model radial profiles of IR, H{\sc i}, CO, HCN, and HCO$^+$ emission are compared to THINGS, HERACLES, EMPIRE, SINGS, and GALEX observations of 17 local spiral galaxies. The Toomre parameter, which measures the stability against star formation (cloud collapse), exceeds unity in the inner disk of a significant number of galaxies. In two galaxies it also exceeds unity in the outer disk. Therefore, in spiral galaxies $Q_{\rm tot}=1$ is not ubiquitous. The model gas velocity dispersion is consistent with the observed H{\sc i} velocity dispersion where available. Within our model HCN and HCO$^+$ is already detectable in relatively low-density gas ($\sim 1000$~cm$^{-3}$). CO and HCN conversion factors and molecular gas depletion time were derived. Both conversion factors are consistent with values found in the literature. Whereas in the massive galaxies the viscous timescale greatly exceeds the star formation timescale, the viscous timescale is smaller than the star formation timescale within $\rm{R}~\sim~2~\rm{R}_{\rm d}$, the disk scale length, in the low-mass galaxies.