论文标题

3D点云中的变压器:调查

Transformers in 3D Point Clouds: A Survey

论文作者

Lu, Dening, Xie, Qian, Wei, Mingqiang, Gao, Kyle, Xu, Linlin, Li, Jonathan

论文摘要

变形金刚一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适剂如何合适?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前变压器进行分类。此外,我们介绍了研究3D自我注意机制的变异和改善的结果。为了证明变压器在点云分析中的优势,我们介绍了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。

Transformers have been at the heart of the Natural Language Processing (NLP) and Computer Vision (CV) revolutions. The significant success in NLP and CV inspired exploring the use of Transformers in point cloud processing. However, how do Transformers cope with the irregularity and unordered nature of point clouds? How suitable are Transformers for different 3D representations (e.g., point- or voxel-based)? How competent are Transformers for various 3D processing tasks? As of now, there is still no systematic survey of the research on these issues. For the first time, we provided a comprehensive overview of increasingly popular Transformers for 3D point cloud analysis. We start by introducing the theory of the Transformer architecture and reviewing its applications in 2D/3D fields. Then, we present three different taxonomies (i.e., implementation-, data representation-, and task-based), which can classify current Transformer-based methods from multiple perspectives. Furthermore, we present the results of an investigation of the variants and improvements of the self-attention mechanism in 3D. To demonstrate the superiority of Transformers in point cloud analysis, we present comprehensive comparisons of various Transformer-based methods for classification, segmentation, and object detection. Finally, we suggest three potential research directions, providing benefit references for the development of 3D Transformers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源