论文标题

一种验证潜在类增长模型识别的组数量的引导方法

A bootstrap approach for validating the number of groups identified by latent class growth models

论文作者

Mésidor, Miceline, Sirois, Caroline, Simard, Marc, Talbot, Denis

论文摘要

在过去几十年中,在医学文献中,使用纵向有限混合模型(例如基于组的轨迹建模)的使用急剧增加。但是,这些方法受到批评,尤其是因为数据驱动的建模过程涉及统计决策。在本文中,我们提出了一种使用Bootstrap用原始数据替换的观测值的方法,以验证已识别的组数量并量化组数量的不确定性。该方法允许研究原始数据中识别的统计有效性和通过检查在引导程序样品中是否还发现相同解决方案的组的不确定性。在一项仿真研究中,我们检查了自举估计的组数量的变异性是否反映了复制方面的可变性。我们还将复制的可变性与贝叶斯后验概率进行了比较。我们评估了三个常用的充分性标准(平均后验概率,正确分类和相对熵的几率)的能力,以识别组数量的不确定性。最后,我们使用魁北克综合慢性疾病监测系统的数据说明了提出的方法,以识别2015年至2018年之间在糖尿病的老年人之间的纵向药物模式。

The use of longitudinal finite mixture models such as group-based trajectory modeling has seen a sharp increase during the last decades in the medical literature. However, these methods have been criticized especially because of the data-driven modelling process which involves statistical decision-making. In this paper, we propose an approach that uses bootstrap to sample observations with replacement from the original data to validate the number of groups identified and to quantify the uncertainty in the number of groups. The method allows investigating the statistical validity and the uncertainty of the groups identified in the original data by checking if the same solution is also found across the bootstrap samples. In a simulation study, we examined whether the bootstrap-estimated variability in the number of groups reflected the replication-wise variability. We also compared the replication-wise variability to the Bayesian posterior probability. We evaluated the ability of three commonly used adequacy criteria (average posterior probability, odds of correct classification and relative entropy) to identify uncertainty in the number of groups. Finally, we illustrated the proposed approach using data from the Quebec Integrated Chronic Disease Surveillance System to identify longitudinal medication patterns between 2015 and 2018 in older adults with diabetes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源