论文标题

$ \ MATHSCR {H} $ - 替代损失最小化器的一致性估计错误

$\mathscr{H}$-Consistency Estimation Error of Surrogate Loss Minimizers

论文作者

Awasthi, Pranjal, Mao, Anqi, Mohri, Mehryar, Zhong, Yutao

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a detailed study of estimation errors in terms of surrogate loss estimation errors. We refer to such guarantees as $\mathscr{H}$-consistency estimation error bounds, since they account for the hypothesis set $\mathscr{H}$ adopted. These guarantees are significantly stronger than $\mathscr{H}$-calibration or $\mathscr{H}$-consistency. They are also more informative than similar excess error bounds derived in the literature, when $\mathscr{H}$ is the family of all measurable functions. We prove general theorems providing such guarantees, for both the distribution-dependent and distribution-independent settings. We show that our bounds are tight, modulo a convexity assumption. We also show that previous excess error bounds can be recovered as special cases of our general results. We then present a series of explicit bounds in the case of the zero-one loss, with multiple choices of the surrogate loss and for both the family of linear functions and neural networks with one hidden-layer. We further prove more favorable distribution-dependent guarantees in that case. We also present a series of explicit bounds in the case of the adversarial loss, with surrogate losses based on the supremum of the $ρ$-margin, hinge or sigmoid loss and for the same two general hypothesis sets. Here too, we prove several enhancements of these guarantees under natural distributional assumptions. Finally, we report the results of simulations illustrating our bounds and their tightness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源