论文标题

半决赛:基于合奏的堆叠多模式推断,以更快的假新闻检测

SEMI-FND: Stacked Ensemble Based Multimodal Inference For Faster Fake News Detection

论文作者

Singh, Prabhav, Srivastava, Ridam, Rana, K. P. S., Kumar, Vineet

论文摘要

假新闻检测(FND)是自然语言处理中的重要领域,旨在在新闻文章中识别和检查主要主张的真实性,以决定新闻的真实性。 FND发现它在防止因可能损害社会某些部分的事实而导致的社会,政治和民族损害来预防社会,政治和民族损害。此外,随着通过社交媒体(包括图像和文本)的假新闻传播的爆炸性增加,必须更快,更准确地识别假新闻。为了解决这个问题,这项工作调查了一种新型的多模式堆叠的基于合奏的方法(SEMIFND),以伪造新闻检测。焦点还一直放在确保更快的参数的速度上。此外,为了提高多模式性能,对图像模式进行了深度的单峰分析,以识别NASNET移动设备作为任务最合适的模型。对于文本,使用了Bert和Electra的合奏。在两个数据集上评估了该方法:Twitter Mediadeval和Weibo Copus。建议的框架分别在Twitter和Weibo数据集中提供了85.80%和86.83%的精度。与最近的类似作品相比,这些报告的指标被认为是优越的。此外,与最近的相关作品相比,我们还报告了培训中使用的参数数量的减少。 Semi-FND提供的总体参数降低至少20%,而文本的单峰参数减少为60%。因此,根据提出的调查,得出的结论是,堆叠结合的应用可显着改善FND,而同时也提高了速度。

Fake News Detection (FND) is an essential field in natural language processing that aims to identify and check the truthfulness of major claims in a news article to decide the news veracity. FND finds its uses in preventing social, political and national damage caused due to misrepresentation of facts which may harm a certain section of society. Further, with the explosive rise in fake news dissemination over social media, including images and text, it has become imperative to identify fake news faster and more accurately. To solve this problem, this work investigates a novel multimodal stacked ensemble-based approach (SEMIFND) to fake news detection. Focus is also kept on ensuring faster performance with fewer parameters. Moreover, to improve multimodal performance, a deep unimodal analysis is done on the image modality to identify NasNet Mobile as the most appropriate model for the task. For text, an ensemble of BERT and ELECTRA is used. The approach was evaluated on two datasets: Twitter MediaEval and Weibo Corpus. The suggested framework offered accuracies of 85.80% and 86.83% on the Twitter and Weibo datasets respectively. These reported metrics are found to be superior when compared to similar recent works. Further, we also report a reduction in the number of parameters used in training when compared to recent relevant works. SEMI-FND offers an overall parameter reduction of at least 20% with unimodal parametric reduction on text being 60%. Therefore, based on the investigations presented, it is concluded that the application of a stacked ensembling significantly improves FND over other approaches while also improving speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源