论文标题

关于推荐系统中面向用户公平性的推广性的实验

Experiments on Generalizability of User-Oriented Fairness in Recommender Systems

论文作者

Rahmani, Hossein A., Naghiaei, Mohammadmehdi, Dehghan, Mahdi, Aliannejadi, Mohammad

论文摘要

推荐系统的最新工作主要集中于建议中的公平性,这是衡量建议质量的重要方面。公平意识的推荐系统旨在类似地对待不同的用户组。有关以用户为导向的公平性的相关工作突出了公平性 - 统一建议算法对某个用户组的判别性行为,该算法根据用户的活动级别定义。典型的解决方案包括提出以用户为中心的公平性重新排列框架,该框架应用于基本排名模型的顶部,以减轻其不公平的行为,即某些用户组,即处于弱势群体。在本文中,我们重新生产了一个面向用户的公平研究,并提供了广泛的实验,以分析其对各种公平和建议方面的依赖性,包括建议域,基本排名模型的性质和用户分组方法。此外,我们评估了用户(例如NDCG,用户 - fairness)和项目端(例如新颖性,物品 - 商品)指标的重新排列框架提供的最终建议。我们在不同的评估指标方面发现了模型的性能之间有趣的趋势和权衡。例如,我们看到,优势/不利的用户组的定义在公平算法的有效性以及它如何提高特定基础排名模型的性能中起着至关重要的作用。最后,我们重点介绍了该领域的一些重要的开放挑战和未来的方向。我们在https://github.com/rahmanidashti/fairrecsys上公开发布数据,评估管道和受过训练的模型。

Recent work in recommender systems mainly focuses on fairness in recommendations as an important aspect of measuring recommendations quality. A fairness-aware recommender system aims to treat different user groups similarly. Relevant work on user-oriented fairness highlights the discriminative behavior of fairness-unaware recommendation algorithms towards a certain user group, defined based on users' activity level. Typical solutions include proposing a user-centered fairness re-ranking framework applied on top of a base ranking model to mitigate its unfair behavior towards a certain user group i.e., disadvantaged group. In this paper, we re-produce a user-oriented fairness study and provide extensive experiments to analyze the dependency of their proposed method on various fairness and recommendation aspects, including the recommendation domain, nature of the base ranking model, and user grouping method. Moreover, we evaluate the final recommendations provided by the re-ranking framework from both user- (e.g., NDCG, user-fairness) and item-side (e.g., novelty, item-fairness) metrics. We discover interesting trends and trade-offs between the model's performance in terms of different evaluation metrics. For instance, we see that the definition of the advantaged/disadvantaged user groups plays a crucial role in the effectiveness of the fairness algorithm and how it improves the performance of specific base ranking models. Finally, we highlight some important open challenges and future directions in this field. We release the data, evaluation pipeline, and the trained models publicly on https://github.com/rahmanidashti/FairRecSys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源