论文标题

Midgard:在非结构化环境中自动导航的模拟平台

MIDGARD: A Simulation Platform for Autonomous Navigation in Unstructured Environments

论文作者

Vecchio, Giuseppe, Palazzo, Simone, Guastella, Dario C., Carlucho, Ignacio, Albrecht, Stefano V., Muscato, Giovanni, Spampinato, Concetto

论文摘要

我们提出了Midgard,这是一个开源模拟平台,用于在室外非结构化环境中自动机器人导航。 Midgard旨在实现在感性3D环境中对自主代理(例如,无人接地车)的培训,并通过培训场景的可变性来支持基于学习的代理的概括技巧。 Midgard的主要功能包括可配置,可扩展和困难驱动的程序景观生成管道,并具有基于虚幻引擎的快速和逼真的场景。此外,Midgard还对OpenAi Gym进行了内置支持,OpenAI Gym是一个用于功能扩展的编程接口(例如,集成了新型的传感器,自定义曝光内部模拟变量)和各种模拟代理传感器(例如RGB,DEPTH和实例/语义分段)。我们通过一组最先进的增强学习算法评估了Midgard的功能作为机器人导航的基准测试工具。结果表明,Midgard作为模拟和训练环境的适用性,以及我们程序生成方法在控制场景难度方面的有效性,这直接反映了准确度量指标。 Midgard构建,源代码和文档可在https://midgardsim.org/上找到。

We present MIDGARD, an open-source simulation platform for autonomous robot navigation in outdoor unstructured environments. MIDGARD is designed to enable the training of autonomous agents (e.g., unmanned ground vehicles) in photorealistic 3D environments, and to support the generalization skills of learning-based agents through the variability in training scenarios. MIDGARD's main features include a configurable, extensible, and difficulty-driven procedural landscape generation pipeline, with fast and photorealistic scene rendering based on Unreal Engine. Additionally, MIDGARD has built-in support for OpenAI Gym, a programming interface for feature extension (e.g., integrating new types of sensors, customizing exposing internal simulation variables), and a variety of simulated agent sensors (e.g., RGB, depth and instance/semantic segmentation). We evaluate MIDGARD's capabilities as a benchmarking tool for robot navigation utilizing a set of state-of-the-art reinforcement learning algorithms. The results demonstrate MIDGARD's suitability as a simulation and training environment, as well as the effectiveness of our procedural generation approach in controlling scene difficulty, which directly reflects on accuracy metrics. MIDGARD build, source code and documentation are available at https://midgardsim.org/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源