论文标题
标签有效的自我监督联盟学习,用于解决医学成像中数据异质性
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging
论文作者
论文摘要
来自多个机构的大规模医疗数据集的收集和策划对于培训准确的深度学习模型至关重要,但是隐私问题通常会阻碍数据共享。联合学习(FL)是一个有前途的解决方案,可以在不同机构之间提供隐私的协作学习,但由于异质数据分布和缺乏质量标记的数据,它通常会遭受性能恶化。在本文中,我们提出了一个可用于医学图像分析的强大而标签的自我监督的FL框架。我们的方法介绍了一种新型的基于变压器的自我监督的预训练范式,该训练范式直接使用掩盖的图像建模在去中心化目标任务数据集上预训练模型,以促进对异质数据的更强大的表述学习,并有效的知识传递转移到下游模型。对模拟和现实的医学成像非IID联合数据集的广泛经验结果表明,具有变压器的掩盖图像建模显着提高了模型对各种数据异质性的鲁棒性。值得注意的是,在严重的数据异质性下,我们的方法在不依赖任何其他预训练数据的情况下,在视网膜,皮肤病学和胸部X射线分类的测试准确性中,与有影响力的基线相比,在测试准确性上的提高了5.06%,1.53%和4.58%。此外,我们表明,与现有的FL算法相比,我们联合联盟的自我监管的预训练方法产生的模型会产生更好的推广模型,并在使用有限的标记数据进行微调时进行微调,并在使用有限的标记数据进行微调时执行更有效的效果。该代码可在https://github.com/rui-yan/ssl-fl上找到。
The collection and curation of large-scale medical datasets from multiple institutions is essential for training accurate deep learning models, but privacy concerns often hinder data sharing. Federated learning (FL) is a promising solution that enables privacy-preserving collaborative learning among different institutions, but it generally suffers from performance deterioration due to heterogeneous data distributions and a lack of quality labeled data. In this paper, we present a robust and label-efficient self-supervised FL framework for medical image analysis. Our method introduces a novel Transformer-based self-supervised pre-training paradigm that pre-trains models directly on decentralized target task datasets using masked image modeling, to facilitate more robust representation learning on heterogeneous data and effective knowledge transfer to downstream models. Extensive empirical results on simulated and real-world medical imaging non-IID federated datasets show that masked image modeling with Transformers significantly improves the robustness of models against various degrees of data heterogeneity. Notably, under severe data heterogeneity, our method, without relying on any additional pre-training data, achieves an improvement of 5.06%, 1.53% and 4.58% in test accuracy on retinal, dermatology and chest X-ray classification compared to the supervised baseline with ImageNet pre-training. In addition, we show that our federated self-supervised pre-training methods yield models that generalize better to out-of-distribution data and perform more effectively when fine-tuning with limited labeled data, compared to existing FL algorithms. The code is available at https://github.com/rui-yan/SSL-FL.