论文标题
重复拍卖中的预算节奏:遗憾和效率而无需融合
Budget Pacing in Repeated Auctions: Regret and Efficiency without Convergence
论文作者
论文摘要
我们在重复拍卖预算的背景下研究了动态\ emph {起搏算法的总体福利和个人后悔保证。这种算法通常用作互联网广告平台中的招标代理,可以自适应地学习通过可调线性乘数来遮盖出价,以匹配指定的预算。我们表明,当代理同时采用基于梯度的起搏的自然形式时,在学习动力学过程中获得的液体福利至少是任何分配规则可获得的最佳预期液体福利的一半。至关重要的是,该结果保持\ emph {不需要动力学的融合},从而使我们能够规避发现平衡的已知复杂性理论障碍。对于任何\ emph {core Auction},该结果对代理估值与持有之间的相关结构也很强,这是一类广泛的拍卖,其中包括一价,第二价格和广义的第二价格拍卖作为特殊情况。为了个人的保证,我们进一步表明,这种节奏算法享受\ emph {动态遗憾}的界限,以实现个人价值最大化,相对于预算示威的bid序列,以满足单调爆炸式属性的任何拍卖。为了补充我们的理论发现,我们根据Bing广告平台的拍卖数据提供了半合成数值模拟。
We study the aggregate welfare and individual regret guarantees of dynamic \emph{pacing algorithms} in the context of repeated auctions with budgets. Such algorithms are commonly used as bidding agents in Internet advertising platforms, adaptively learning to shade bids by a tunable linear multiplier in order to match a specified budget. We show that when agents simultaneously apply a natural form of gradient-based pacing, the liquid welfare obtained over the course of the learning dynamics is at least half the optimal expected liquid welfare obtainable by any allocation rule. Crucially, this result holds \emph{without requiring convergence of the dynamics}, allowing us to circumvent known complexity-theoretic obstacles of finding equilibria. This result is also robust to the correlation structure between agent valuations and holds for any \emph{core auction}, a broad class of auctions that includes first-price, second-price, and generalized second-price auctions as special cases. For individual guarantees, we further show such pacing algorithms enjoy \emph{dynamic regret} bounds for individual value maximization, with respect to the sequence of budget-pacing bids, for any auction satisfying a monotone bang-for-buck property. To complement our theoretical findings, we provide semi-synthetic numerical simulations based on auction data from the Bing Advertising platform.