论文标题

ADAMCT:CNN转换器的自适应混合物以进行顺序推荐

AdaMCT: Adaptive Mixture of CNN-Transformer for Sequential Recommendation

论文作者

Jiang, Juyong, Zhang, Peiyan, Luo, Yingtao, Li, Chaozhuo, Kim, Jae Boum, Zhang, Kai, Wang, Senzhang, Xie, Xing, Kim, Sunghun

论文摘要

顺序推荐(SR)旨在模拟用户从一系列交互中的动态偏好。 SR用户建模中的关键挑战在于用户偏好的固有变异性。有效的SR模型有望捕获用户表现出的长期和短期偏好,其中前者可以对影响后者的稳定兴趣提供全面的理解。为了更有效地捕获此类信息,我们通过通过局部卷积过滤器将其全局注意机制合并到变压器中,并通过层次吸引的自适应混合物单元(称为ADAMCT)在个性化的基础上自适应地确定了混合重要性。此外,由于用户可能会反复浏览潜在的购买,因此预计将在长期/短期偏好模型中同时考虑多个相关项目。鉴于基于软马克斯的注意力可能会促进单峰性激活,因此我们提出挤压兴奋的注意(并带有sigmoid激活)到SR模型中,以同时捕获多个相关项目(键)。对三种广泛采用的基准测试的广泛实验证实了我们提出的方法的有效性和效率。源代码可从https://github.com/juyongjiang/adamct获得。

Sequential recommendation (SR) aims to model users dynamic preferences from a series of interactions. A pivotal challenge in user modeling for SR lies in the inherent variability of user preferences. An effective SR model is expected to capture both the long-term and short-term preferences exhibited by users, wherein the former can offer a comprehensive understanding of stable interests that impact the latter. To more effectively capture such information, we incorporate locality inductive bias into the Transformer by amalgamating its global attention mechanism with a local convolutional filter, and adaptively ascertain the mixing importance on a personalized basis through layer-aware adaptive mixture units, termed as AdaMCT. Moreover, as users may repeatedly browse potential purchases, it is expected to consider multiple relevant items concurrently in long-/short-term preferences modeling. Given that softmax-based attention may promote unimodal activation, we propose the Squeeze-Excitation Attention (with sigmoid activation) into SR models to capture multiple pertinent items (keys) simultaneously. Extensive experiments on three widely employed benchmarks substantiate the effectiveness and efficiency of our proposed approach. Source code is available at https://github.com/juyongjiang/AdaMCT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源