论文标题

高分辨率作物产量预测的弱监督框架

A weakly supervised framework for high-resolution crop yield forecasts

论文作者

Paudel, Dilli R., Marcos, Diego, de Wit, Allard, Boogaard, Hendrik, Athanasiadis, Ioannis N.

论文摘要

在相同的空间分辨率下,并非总是可以提供预测的预测输入和标签数据。我们提出了一个深度学习框架,该框架使用高分辨率输入和低分辨率标签,以产生两个空间水平的作物产量预测。通过低分辨率作物区域和产量统计的弱监督,对预测模型进行了校准。我们通过将欧洲的区域收益分解为从母统计区域到五个国家(德国,西班牙,法国,匈牙利,意大利)和两种农作物(软麦和土豆)的子区域来评估该框架。将弱监督模型的性能与线性趋势模型和提高梯度的决策树(GBDT)进行了比较。较高的分辨率作物产量预测对政策制定者和其他利益相关者有用。弱监督的深度学习方法即使在没有高分辨率收益数据的情况下,也提供了一种产生此类预测的方法。

Predictor inputs and label data for crop yield forecasting are not always available at the same spatial resolution. We propose a deep learning framework that uses high resolution inputs and low resolution labels to produce crop yield forecasts for both spatial levels. The forecasting model is calibrated by weak supervision from low resolution crop area and yield statistics. We evaluated the framework by disaggregating regional yields in Europe from parent statistical regions to sub-regions for five countries (Germany, Spain, France, Hungary, Italy) and two crops (soft wheat and potatoes). Performance of weakly supervised models was compared with linear trend models and Gradient-Boosted Decision Trees (GBDT). Higher resolution crop yield forecasts are useful to policymakers and other stakeholders. Weakly supervised deep learning methods provide a way to produce such forecasts even in the absence of high resolution yield data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源