论文标题

学习用于操作氮反应率预测的潜在表示

Learning latent representations for operational nitrogen response rate prediction

论文作者

Pylianidis, Christos, Athanasiadis, Ioannis N.

论文摘要

学习潜在表示有助于几个学科的运营决策。它的优势包括在过去手动执行的数据和自动化过程中发现隐藏的交互。地球和环境科学也采用了代表性学习。但是,仍然有一些子字段取决于基于专家知识的手动功能工程以及不利用潜在空间的算法的使用。依靠这些技术可以抑制运营决策,因为它们施加数据限制并抑制自动化。在这项工作中,我们采用了一个案例研究来进行氮反应率预测,并检查是否可以将表示学习用于运营使用。我们比较了多层感知器,一个自动编码器和双头自动编码器,并与参考随机森林模型进行了氮反应率预测。为了使预测更接近操作设置,我们假设没有未来的天气数据,我们正在使用误差指标和域衍生的错误阈值来评估模型。结果表明,学习潜在表示可以通过提供相等的性能,有时比参考模型更好,可以提供操作氮的反应率预测。

Learning latent representations has aided operational decision-making in several disciplines. Its advantages include uncovering hidden interactions in data and automating procedures which were performed manually in the past. Representation learning is also being adopted by earth and environmental sciences. However, there are still subfields that depend on manual feature engineering based on expert knowledge and the use of algorithms which do not utilize the latent space. Relying on those techniques can inhibit operational decision-making since they impose data constraints and inhibit automation. In this work, we adopt a case study for nitrogen response rate prediction and examine if representation learning can be used for operational use. We compare a Multilayer Perceptron, an Autoencoder, and a dual-head Autoencoder with a reference Random Forest model for nitrogen response rate prediction. To bring the predictions closer to an operational setting we assume absence of future weather data, and we are evaluating the models using error metrics and a domain-derived error threshold. The results show that learning latent representations can provide operational nitrogen response rate predictions by offering performance equal and sometimes better than the reference model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源