论文标题
在在线学习设置中实现风险控制
Achieving Risk Control in Online Learning Settings
论文作者
论文摘要
为了为在线学习模型提供严格的不确定性量化,我们开发了一个框架,用于构建不确定性集,该框架可以控制风险,例如在在线环境中控制置信区间,虚假负率或F1分数的覆盖范围。这扩展了共形预测,以适用于更大类的在线学习问题。即使基础数据分布以未知的方式随着时间的流逝,即使基础数据分布急剧上升,甚至在任何用户指定的级别上都可以保证在任何用户指定级别的风险控制。我们提出的技术非常灵活,因为它可以使用任何基本的在线学习算法(例如,在线培训的深度神经网络)进行应用,需要最少的实施工作,并且基本上零额外的计算成本。我们进一步扩展了同时控制多种风险的方法,因此我们生成的预测集对所有给定风险都是有效的。为了证明我们方法的实用性,我们对现实世界表的时间序列数据集进行实验,以表明所提出的方法严格控制各种自然风险。此外,我们展示了如何为以前的顺序校准方案无法处理的在线图像深度估计问题构造有效的间隔。
To provide rigorous uncertainty quantification for online learning models, we develop a framework for constructing uncertainty sets that provably control risk -- such as coverage of confidence intervals, false negative rate, or F1 score -- in the online setting. This extends conformal prediction to apply to a larger class of online learning problems. Our method guarantees risk control at any user-specified level even when the underlying data distribution shifts drastically, even adversarially, over time in an unknown fashion. The technique we propose is highly flexible as it can be applied with any base online learning algorithm (e.g., a deep neural network trained online), requiring minimal implementation effort and essentially zero additional computational cost. We further extend our approach to control multiple risks simultaneously, so the prediction sets we generate are valid for all given risks. To demonstrate the utility of our method, we conduct experiments on real-world tabular time-series data sets showing that the proposed method rigorously controls various natural risks. Furthermore, we show how to construct valid intervals for an online image-depth estimation problem that previous sequential calibration schemes cannot handle.