论文标题

桥梁检查员的采矿观察和认知行为过程模式

Mining Observation and Cognitive Behavior Process Patterns of Bridge Inspector

论文作者

Liu, Pengkun, Xiong, Ruoxin, Tang, Pingbo

论文摘要

在桥梁检查中,工程师应通过确定这些缺陷的因素来诊断观察到的桥梁缺陷。传统上,工程师根据视觉检查搜索和组织与结构性条件相关的信息。即使遵循相同的定性检查标准,经验丰富的工程师也倾向于找到关键的缺陷,并比经验不足的缺陷更可靠地预测基本原因。独特的桥梁和现场条件,可用数据的质量以及个人技能和知识共同影响了数据驱动的桥梁诊断的主观性质。不幸的是,缺乏有关经验丰富的工程师如何观察桥梁缺陷和识别故障模式的详细数据,因此很难理解哪种工程师的行为构成了产生可靠的桥梁检查的最佳实践。此外,即使是经验丰富的工程师有时也可能没有注意到关键缺陷,从而产生不一致的,矛盾的状况评估。因此,桥梁检查员的详细认知行为分析对于启用主动检查员教练系统至关重要,该检查员使用检查员的行为历史来补充个人限制。本文提出了一个计算框架,用于揭示工程师的观察和认知行为过程,以识别桥梁缺陷并产生诊断结论。作者设计了一个由FEM模拟数据和检查报告组成的桥梁检查游戏,以捕获和分析经验丰富且缺乏经验的工程师的诊断行为。挖掘这些行为对数已经揭示了可重复使用的行为过程模式,这些过程绘制了关键的桥梁缺陷和诊断结论。结果表明,所提出的方法可以主动共享检查经验并改善检查过程的解释性和可靠性。

In bridge inspection, engineers should diagnose the observed bridge defects by identifying the factors underlying those defects. Traditionally, engineers search and organize structural condition-related information based on visual inspections. Even following the same qualitative inspection standards, experienced engineers tend to find the critical defects and predict the underlying reasons more reliably than less experienced ones. Unique bridge and site conditions, quality of available data, and personal skills and knowledge collectively influence such a subjective nature of data-driven bridge diagnosis. Unfortunately, the lack of detailed data about how experienced engineers observe bridge defects and identify failure modes makes it hard to comprehend what engineers' behaviors form the best practice of producing reliable bridge inspection. Besides, even experienced engineers could sometimes fail to notice critical defects, thereby producing inconsistent, conflicting condition assessments. Therefore, a detailed cognitive behavior analysis of bridge inspectors is critical for enabling a proactive inspector coaching system that uses inspectors' behavior histories to complement personal limitations. This paper presents a computational framework for revealing engineers' observation and cognitive-behavioral processes to identify bridge defects and produce diagnosis conclusions. The authors designed a bridge inspection game consisting of FEM simulation data and inspection reports to capture and analyze experienced and inexperienced engineers' diagnosis behaviors. Mining these behavioral logs have revealed reusable behavioral process patterns that map critical bridge defects and diagnosis conclusions. The results indicate that the proposed method can proactively share inspection experiences and improve inspection processes' explainability and reliability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源