论文标题
目标指导的对话响应使用常识和数据扩展
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
论文作者
论文摘要
目标指导的响应生成使对话系统能够将对话从对话上下文顺畅地转换为目标句子。这种控制对于设计对话系统很有用,该对话系统将对话指向特定目标,例如创建非引人注目的建议或在对话中引入新主题。在本文中,我们引入了一种针对目标引导的响应生成的新技术,该技术首先找到了源和目标之间常识性知识概念的桥接路径,然后使用已确定的桥接路径来生成过渡响应。此外,我们提出的技术将现有的对话数据集重新解决目标引导。实验表明,所提出的技术在此任务上的表现优于各种基线。最后,我们观察到,该任务的现有自动化指标与人类判断评级差异很大。我们提出了一个新的评估指标,我们证明,对目标引导的响应评估更可靠。我们的工作通常使对话系统设计师能够对其系统产生的对话进行更多控制。
Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.