论文标题

通过歧管 - 希尔伯特内核的一致插值合奏

Consistent Interpolating Ensembles via the Manifold-Hilbert Kernel

论文作者

Wang, Yutong, Scott, Clayton D.

论文摘要

过分兼容学习理论的最新研究试图在插值制度中建立概括保证。已经针对一些常见的方法建立了此类结果,但到目前为止,对于集成方法而言,这些结果尚未建立。我们设计了一种合奏分类方法,该方法同时插入培训数据,并且对于一系列数据分布是一致的。为此,我们为分布在Riemannian歧管上的数据定义了歧管 - 希尔伯特内核。我们证明,在Devroye等人的环境中,使用歧管 - 希尔伯特内核的内核平滑回归是微弱一致的。 1998年。对于球体,我们表明,歧管 - 希尔伯特内核可以被实现为加权随机分区内核,它是基于分区的分类器的无限合奏。

Recent research in the theory of overparametrized learning has sought to establish generalization guarantees in the interpolating regime. Such results have been established for a few common classes of methods, but so far not for ensemble methods. We devise an ensemble classification method that simultaneously interpolates the training data, and is consistent for a broad class of data distributions. To this end, we define the manifold-Hilbert kernel for data distributed on a Riemannian manifold. We prove that kernel smoothing regression using the manifold-Hilbert kernel is weakly consistent in the setting of Devroye et al. 1998. For the sphere, we show that the manifold-Hilbert kernel can be realized as a weighted random partition kernel, which arises as an infinite ensemble of partition-based classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源