论文标题

通过生成框架绕过在线课堂学习中的ligits偏见

Bypassing Logits Bias in Online Class-Incremental Learning with a Generative Framework

论文作者

Shen, Gehui, Jie, Shibo, Li, Ziheng, Deng, Zhi-Hong

论文摘要

持续学习要求模型在不断从非I.I.D数据流中学习时保持学习知识。由于单通行训练设置,在线持续学习非常具有挑战性,但是它更接近现实情况,在现实情况下,快速适应新数据具有吸引力。在本文中,我们专注于在线课堂学习环境,随着时间的流逝,新课程出现。几乎所有现有的方法都使用SoftMax分类器重播。但是,SoftMax分类器中固有的逻辑偏置问题是灾难性遗忘的主要原因,而现有解决方案不适用于在线设置。为了绕过这个问题,我们放弃了SoftMax分类器,并根据功能空间提出了一个新颖的生成框架。在我们的框架中,使用重播内存的生成分类器用于推理,训练目标是基于成对的度量学习损失,从理论上则证明,以生成方式优化特征空间。为了提高学习新数据的能力,我们进一步提出了一种生成和判别性损失的混合物来训练模型。在包括新引入的无任务数据集在内的多个基准测试的广泛实验表明,我们的方法使用判别性分类器击败了一系列基于最先进的重播方法,并减少了灾难性的遗忘,并以显着的边距持续遗忘。

Continual learning requires the model to maintain the learned knowledge while learning from a non-i.i.d data stream continually. Due to the single-pass training setting, online continual learning is very challenging, but it is closer to the real-world scenarios where quick adaptation to new data is appealing. In this paper, we focus on online class-incremental learning setting in which new classes emerge over time. Almost all existing methods are replay-based with a softmax classifier. However, the inherent logits bias problem in the softmax classifier is a main cause of catastrophic forgetting while existing solutions are not applicable for online settings. To bypass this problem, we abandon the softmax classifier and propose a novel generative framework based on the feature space. In our framework, a generative classifier which utilizes replay memory is used for inference, and the training objective is a pair-based metric learning loss which is proven theoretically to optimize the feature space in a generative way. In order to improve the ability to learn new data, we further propose a hybrid of generative and discriminative loss to train the model. Extensive experiments on several benchmarks, including newly introduced task-free datasets, show that our method beats a series of state-of-the-art replay-based methods with discriminative classifiers, and reduces catastrophic forgetting consistently with a remarkable margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源