论文标题

当地的Wheeler-Dewitt尺寸用于弦乐景观

A Local Wheeler-DeWitt Measure for the String Landscape

论文作者

Friedrich, Bjoern, Hebecker, Arthur, Salmhofer, Manfred, Strauss, Jonah Cedric, Walcher, Johannes

论文摘要

根据“宇宙中央教条”的说法,设立空间可以被视为具有有限数量的自由度的量子机械系统,该系统由地平线区域设定。我们将此假设与Wheeler-Dewitt(WDW)方程式一起使用,以解决永恒膨胀的度量问题。因此,我们的目标是在定义为各种子空间的直接总和上找到宇宙的时间无关的波函数:每个De Sitter真空吸尘器的有限维子空间和每个终端Minkowski或Ads vaccuum vaccuum的无限二维子空间。我们认为,要与半古典直觉一致,这种解决方案需要存在来源。这些是由WDW方程中的一个不稳定术语实现的,该术语是由Hartle-Hawking No-Boundary或Linde/vilenkin隧道提案引起的。综上所述,这些步骤明确地导致了我们想将其视为“本地WDW度量”,其中``局部''是指结果波函数的DS部分描述了静态斑块的叠加。整个多元宇宙的全局3秒空间部分没有外观。

According to the `Cosmological Central Dogma', de Sitter space can be viewed as a quantum mechanical system with a finite number of degrees of freedom, set by the horizon area. We use this assumption together with the Wheeler-DeWitt (WDW) equation to approach the measure problem of eternal inflation. Thus, our goal is to find a time-independent wave function of the universe on a total Hilbert space defined as the direct sum of a variety of subspaces: A finite-dimensional subspace for each de Sitter vacuum and an infinite-dimensional subspace for each terminal Minkowski or AdS vaccuum. We argue that, to be consistent with semiclassical intuition, such a solution requires the presence of sources. These are implemented as an inhomogenous term in the WDW equation, induced by the Hartle-Hawking no-boundary or the Linde/Vilenkin tunneling proposal. Taken together, these steps unambiguously lead to what we would like to think of as a `Local WDW measure,' where `local' refers to the fact that the dS part of the resulting wave function describes a superposition of static patches. The global 3-sphere spatial section of the entire multiverse makes no appearance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源