论文标题

SARI:在重复互动中共享自主权

SARI: Shared Autonomy across Repeated Interaction

论文作者

Jonnavittula, Ananth, Mehta, Shaunak A., Losey, Dylan P.

论文摘要

辅助机器人武器试图帮助用户执行日常任务。机器人可以提供这种帮助的一种方式是共享自主权。在共同的自主权中,人类和机器人都保持对机器人运动的控制:随着机器人的自信,它了解了人类想要的东西,它干预了自动化任务。但是,机器人首先如何知道这些任务呢?共享自治的最新方法通常依赖于先验知识。例如,机器人可能需要事先知道人类的潜在目标。在长期互动过程中,这些方法将不可避免地崩溃 - 人类迟早会试图执行机器人不会期望的任务。因此,在本文中,我们制定了一种替代方法来共享自主权,以从头开始学习帮助。我们的见解是,操作员每天重复重要任务(例如,打开冰箱,煮咖啡)。因此,我们没有依靠先验知识,而是利用这些重复的互动来学习辅助政策。我们介绍了一种认可人类任务的算法Sari,复制了类似的演示,并在不确定时返回控制。然后,我们将学习与控制相结合,以证明我们方法的误差最终是统一的。我们执行模拟以支持此错误绑定,比较我们模仿学习基准的方法,并探索其协助越来越多的任务的能力。最后,我们通过行业标准的方法和共享的自主基线进行了三项用户研究,包括与残疾用户进行的试点测试。我们的结果表明,跨重复交互的学习共享自主权与已知任务的现有方法相匹配,并且在新任务上的基准都优于基准。在此处查看我们的用户研究的视频:https://youtu.be/3ve4OMSVLVC

Assistive robot arms try to help their users perform everyday tasks. One way robots can provide this assistance is shared autonomy. Within shared autonomy, both the human and robot maintain control over the robot's motion: as the robot becomes confident it understands what the human wants, it intervenes to automate the task. But how does the robot know these tasks in the first place? State-of-the-art approaches to shared autonomy often rely on prior knowledge. For instance, the robot may need to know the human's potential goals beforehand. During long-term interaction these methods will inevitably break down -- sooner or later the human will attempt to perform a task that the robot does not expect. Accordingly, in this paper we formulate an alternate approach to shared autonomy that learns assistance from scratch. Our insight is that operators repeat important tasks on a daily basis (e.g., opening the fridge, making coffee). Instead of relying on prior knowledge, we therefore take advantage of these repeated interactions to learn assistive policies. We introduce SARI, an algorithm that recognizes the human's task, replicates similar demonstrations, and returns control when unsure. We then combine learning with control to demonstrate that the error of our approach is uniformly ultimately bounded. We perform simulations to support this error bound, compare our approach to imitation learning baselines, and explore its capacity to assist for an increasing number of tasks. Finally, we conduct three user studies with industry-standard methods and shared autonomy baselines, including a pilot test with a disabled user. Our results indicate that learning shared autonomy across repeated interactions matches existing approaches for known tasks and outperforms baselines on new tasks. See videos of our user studies here: https://youtu.be/3vE4omSvLvc

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源