论文标题
ch $ _ {3} $ oh,c-c $ _ {3} $ h $ _ {2} $和hnco to l1544的多行观测值
Multi-line observations of CH$_{3}$OH, c-C$_{3}$H$_{2}$ and HNCO towards L1544: Dissecting the core structure with chemical differentiation
论文作者
论文摘要
遗前核心是形成恒星和恒星系统的基本单位。遗前核的物理和化学结构的解剖学对于理解恒星形成过程至关重要。 L1544是一种典型的固有前核心,在灰尘峰周围显示出显着的化学分化。我们旨在限制不同分子发射峰的物理条件。这项研究使我们能够将化学模型预测的丰度曲线与Bonnor-Ebert(BE)球体的经典密度结构进行比较。我们对Ch $ _ {3} $ oh,C-C $ _ {3} $ H $ _ {2} $和HNCO进行了多透明指向观察,并带有IRAM 3000万望远镜,朝着灰尘峰和相应的L1544分子峰。通过非LTE辐射转移计算和1维模型,我们重新审视L1544的物理结构,并具有当前化学模型的丰度曲线。我们发现HNCO,C-C $ _ {3} $ h $ _ {2} $和CH $ _ {3} $ OH LINES中的L1544中的线条正在逐步跟踪更高的密度气体,从$ \ sim $ 10 $^{4} $到几次10 $^{5} $ cm $ cm $ $ cm $^$^{-3} $。尤其是,我们发现要产生观察到的强度和ch $ _ {3} $ OH线的比率,则需要在Be球上增强局部气体密度。这表明,早期核心的物理结构可能不一定遵循本地气体密度的平稳降低,但可以通过重力中心周围的块状子结构拦截。来自不同分子物种的分子线的多个跃迁可以提供固定核心密度结构的层析成像视图。与BE球偏离的局部气体密度增强可能反映了看起来不对称并在大规模云结构的聚会点增强的吸积流的影响。
Pre-stellar cores are the basic unit for the formation of stars and stellar systems. The anatomy of the physical and chemical structures of pre-stellar cores is critical for understanding the star formation process. L1544 is a prototypical pre-stellar core, which shows significant chemical differentiation surrounding the dust peak. We aim to constrain the physical conditions at the different molecular emission peaks. This study allows us to compare the abundance profiles predicted from chemical models together with the classical density structure of Bonnor-Ebert (BE) sphere. We conducted multi-transition pointed observations of CH$_{3}$OH, c-C$_{3}$H$_{2}$ and HNCO with the IRAM 30m telescope, towards the dust peak and the respective molecular peaks of L1544. With non-LTE radiative transfer calculations and a 1-dimensional model, we revisit the physical structure of L1544, and benchmark with the abundance profiles from current chemical models. We find that the HNCO, c-C$_{3}$H$_{2}$ and CH$_{3}$OH lines in L1544 are tracing progressively higher density gas, from $\sim$10$^{4}$ to several times 10$^{5}$ cm$^{-3}$. Particularly, we find that to produce the observed intensities and ratios of the CH$_{3}$OH lines, a local gas density enhancement upon the BE sphere is required. This suggests that the physical structure of an early-stage core may not necessarily follow a smooth decrease of gas density profile locally, but can be intercepted by clumpy substructures surrounding the gravitational center. Multiple transitions of molecular lines from different molecular species can provide a tomographic view of the density structure of pre-stellar cores. The local gas density enhancement deviating from the BE sphere may reflect the impact of accretion flows that appear asymmetric and are enhanced at the meeting point of large-scale cloud structures.