论文标题
对称诱导的无分解子空间
Symmetry-induced decoherence-free subspaces
论文作者
论文摘要
在开放系统中,连贯性是一种基本而微妙的现象。我们发现了它与哈密顿系统及其与环境的耦合所尊重的对称性的关系。我们通过引入“幽灵变量”来区分多体系统的本地和全球类别的无腐蚀子空间。后者与对称性是正交的,与环境的耦合并不取决于它们。在经典的相空间中促进了建造它们,可以通过Poisson和Lie代数分别在经典和量子力学中扮演对称性的等效作用将其转移到量子力学。给出了相互作用的自旋系统的示例。
Preservation of coherence is a fundamental yet subtle phenomenon in open systems. We uncover its relation to symmetries respected by the system Hamiltonian and its coupling to the environment. We discriminate between local and global classes of decoherence-free subspaces for many-body systems through the introduction of "ghost variables". The latter are orthogonal to the symmetry and the coupling to the environment does not depend on them. Constructing them is facilitated in classical phase space and can be transferred to quantum mechanics through the equivalent role that Poisson and Lie algebras play for symmetries in classical and quantum mechanics, respectively. Examples are given for an interacting spin system.