论文标题
稀疏联轴器和马尔可夫毯子:评论“自由能原理的物理学有多特别?”作者:阿奎莱拉
Sparse coupling and Markov blankets: A comment on "How particular is the physics of the Free Energy Principle?" by Aguilera, Millidge, Tschantz and Buckley
论文作者
论文摘要
在本评论中,我们对Aguilera等人的“自由能原理物理学的特殊性”中提出的自由能原理(以下简称:FEP)做出了回应。在目标文章中,作者分析了某些稀疏耦合的随机微分方程,其非平衡稳态密度被认为是先前的FEP文献 - 具有马尔可夫毛毯。作者证明,通常不能保证马尔可夫毛毯从稀疏的耦合中遵循。当前的评论解释了在高斯稳态密度的情况下,稀疏耦合与马尔可夫毛毯之间的关系。我们精确地得出了因果耦合引线的条件 - 或不导致铅覆盖。重要的是,我们对线性和非线性随机微分方程的派生。这个结果可能会阐明我们希望拥有马尔可夫毯子的系统。未来的工作应着重于验证在稀疏耦合系统的现实模型中是否满足这些约束。
In this commentary, we respond to a technical analysis of the Free Energy Principle (hereafter: FEP) presented in "How particular is the physics of the Free Energy Principle" by Aguilera et al. In the target article, the authors analyzed certain sparsely coupled stochastic differential equations whose non-equilibrium steady-state densities are claimed--in previous FEP literature--to have a Markov blanket. The authors demonstrate that in general, Markov blankets are not guaranteed to follow from sparse coupling. The current commentary explains the relationship between sparse coupling and Markov blankets in the case of Gaussian steady-state densities. We precisely derive conditions under which causal coupling leads--or does not lead--to Markov blankets. Importantly, our derivations hold for both linear and non-linear stochastic differential equations. This result may shed light on the sorts of systems which we expect to have Markov blankets. Future work should focus on verifying whether these sorts of constraints are satisfied in realistic models of sparsely coupled systems.