论文标题

关于支持区块链的异步联合学习的权力下放

On the Decentralization of Blockchain-enabled Asynchronous Federated Learning

论文作者

Wilhelmi, Francesc, Guerra, Elia, Dini, Paolo

论文摘要

联合学习(FL)的部分要归功于边缘计算范式的出现,预计将在生产环境中实现真正的实时应用程序。但是,其对编排中央服务器的最初依赖性在安全性,隐私和可扩展性方面引起了一些问题。为了解决其中一些担忧,区块链技术有望带来权力下放,鲁棒性和增强对佛罗里达州的信任。但是,通过区块链(也称为flchain)赋予FL的能力在账本不一致和信息时代(AOI)方面具有一定的影响,这些内容自然是从区块链完全分散的操作中继承的。此类问题源于这样一个事实,即鉴于区块链中的临时分类帐版本,FL设备可能会使用不同的模型进行训练,并且鉴于FL操作的异步性,可以生成陈旧的本地更新(使用过时的模型计算)。在本文中,我们阐明了fl链环境的含义,并研究了AOI和分类帐不一致对FL性能的影响。为此,我们提供了一个忠实的模拟工具,该工具允许捕获弗洛基操作的分散和异步性质。

Federated learning (FL), thanks in part to the emergence of the edge computing paradigm, is expected to enable true real-time applications in production environments. However, its original dependence on a central server for orchestration raises several concerns in terms of security, privacy, and scalability. To solve some of these worries, blockchain technology is expected to bring decentralization, robustness, and enhanced trust to FL. The empowerment of FL through blockchain (also referred to as FLchain), however, has some implications in terms of ledger inconsistencies and age of information (AoI), which are naturally inherited from the blockchain's fully decentralized operation. Such issues stem from the fact that, given the temporary ledger versions in the blockchain, FL devices may use different models for training, and that, given the asynchronicity of the FL operation, stale local updates (computed using outdated models) may be generated. In this paper, we shed light on the implications of the FLchain setting and study the effect that both the AoI and ledger inconsistencies have on the FL performance. To that end, we provide a faithful simulation tool that allows capturing the decentralized and asynchronous nature of the FLchain operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源