论文标题
如何指导自适应深度采样?
How to Guide Adaptive Depth Sampling?
论文作者
论文摘要
深度传感技术的最新进展允许对激光束进行快速电子操纵,而不是固定的机械旋转。这将使将来的传感器原则上的传感器实时变化。我们在这里研究了将采样模式适应给定帧的抽象问题是否可以减少重建误差或允许更稀疏的模式。我们提出了一种建设性的通用方法,以指导自适应深度采样算法。 给定抽样预算B,深度预测率P和所需的质量度量M,我们提出了一个重要的图表,突出了重要的采样位置。给定框架定义为给定的框架为预测变量P产生的M的每个像素预期值,给定B随机样品的模式。该地图可以在训练阶段得到很好的估计。我们表明,鉴于RGB图像,神经网络可以学会产生非常忠实的重要性图。然后,我们提出了一种算法来为场景产生采样模式,在很难重建的区域中,该算法越来越密集。可以根据硬件限制,深度预测指标的类型以及应最小化的任何自定义重建误差量度来调整我们的模块框架的采样策略。我们通过模拟来验证我们的方法表现优于网格和随机抽样模式以及最新的自适应算法。
Recent advances in depth sensing technologies allow fast electronic maneuvering of the laser beam, as opposed to fixed mechanical rotations. This will enable future sensors, in principle, to vary in real-time the sampling pattern. We examine here the abstract problem of whether adapting the sampling pattern for a given frame can reduce the reconstruction error or allow a sparser pattern. We propose a constructive generic method to guide adaptive depth sampling algorithms. Given a sampling budget B, a depth predictor P and a desired quality measure M, we propose an Importance Map that highlights important sampling locations. This map is defined for a given frame as the per-pixel expected value of M produced by the predictor P, given a pattern of B random samples. This map can be well estimated in a training phase. We show that a neural network can learn to produce a highly faithful Importance Map, given an RGB image. We then suggest an algorithm to produce a sampling pattern for the scene, which is denser in regions that are harder to reconstruct. The sampling strategy of our modular framework can be adjusted according to hardware limitations, type of depth predictor, and any custom reconstruction error measure that should be minimized. We validate through simulations that our approach outperforms grid and random sampling patterns as well as recent state-of-the-art adaptive algorithms.