论文标题
黑洞悖论的替代方案
Alternative for Black Hole Paradoxes
论文作者
论文摘要
在较早的调查中发现的五维扭曲的保形DILATON重力中,对确切的黑洞溶液进行了整个研究。动态黑洞时空的奇异性是由异物五骨多项式的零确定的,没有基本的奇异性。在复杂平面中分析了相对于二十面体组和克莱因表面的HOPF核能,分析了多项式的溶液。该模型适合抗杀伤式边界条件,即使用$ \ mathds {c}^2 $嵌入投影空间中的反物点,并使用$ \ mathds {z} _2 _2 _2 _2 $ sommentry在木制的两侧。如果有人写$^{(5)} g_ {μν} =ω^{4/3} {^{(5)}} {\ tilde g_ {μν}},{^{(5)}}} g_ {μLν}}+n_μn_ν$,$^{(4)} \ tilde g_ {μν} = \barΩ^2 {^{(4)}} \ bar g_ {μν} $,$n_μ$,$n_μ$,然后是$n_μ$ brane and $ the $ the $ the $ the $ the $ ch^^4) g_ {μν} $是共形的。大量的贡献决定了有效的四维时空上的真实极。在构造霍金辐射的统一S-Matrix时,没有任何反对意见。同样,黑洞没有“内部”。
A throughout investigation is made of the exact black hole solution in five-dimensional warped conformal dilaton gravity, found in an earlier investigation. The singularities of the dynamical black hole spacetime are determined by the zeros of a meromorphic quintic polynomial, which has no essential singularities. The solutions of the polynomial are analyzed in the complex plane in relation to the icosahedron group and by the Hopf-fibrations of the Klein surface. The model fits the antipodal boundary condition, i.e., antipodal points in the projected space are identified using the embedding of a Klein surface in $\mathds{C}^2$, using the $\mathds{Z}_2$ symmetry on the two sides of the brane. If one writes $^{(5)}g_{μν}=ω^{4/3}{^{(5)}}{\tilde g_{μν}}, {^{(5)}}{\tilde g_{μν}}={^{(4)}}{\tilde g_{μν}}+n_μn_ν$, $ ^{(4)}\tilde g_{μν}=\barω^2 {^{(4)}}\bar g_{μν}$, with $n_μ$ the normal to the brane and $ω$ the dilaton field, then ${^{(4)}}\bar g_{μν}$ is conformally flat. It is the contribution from the bulk which determines the real pole on the effective four-dimensional spacetime. There is no objection applying 't Hooft's back reaction method in constructing the unitary S-matrix for the Hawking radiation. Again, there is no "inside" of the black hole.