论文标题
氧孔的形成控制linio $ _2 $阴极中的稳定性:DFT研究氧气损失和单线氧形成在锂离子电池中
Oxygen Hole Formation Controls Stability in LiNiO$_2$ Cathodes: DFT Studies of Oxygen Loss and Singlet Oxygen Formation in Li-Ion Batteries
论文作者
论文摘要
富含Ni的阴极材料在锂离子电池中既可以实现高电压和容量,但易于结构不稳定性和通过单线氧的形成而损失氧气。使用从头算分子动力学模拟,我们观察到自发的o $ _2 $损失从界定的linio $ _2 $的(012)表面,在此过程中形成单线氧。我们发现,不稳定性的起源在于在划界期间O的明显氧化,即O在linio $ _2 $中的Ni O氧化还原中起着核心作用。对于Linio $ _2 $,NIO $ _2 $,以及原型岩盐Nio,基于最大局部局部的Wannier函数的密度功能理论和动态均值场理论计算产生CA的NI电荷状态。 +2,o在-2(nio),-1.5(linio $ _2 $)和-1(nio $ _2 $)之间变化。预测的Xas ni $ k $和o $ k $ - 边缘光谱与实验XAS Spectra非常吻合,证实了预测的电荷状态。该计算还表明,先前分配给晶格O-REDOX过程的531 eV的高压O $ K $ - 边缘功能可能是由O-Redox诱导的水插入和O-O二聚体形成在高电荷状态下的O-O-O二聚体形成。这里观察到的o $ _2 $表面损失路线由2个表面o $^{.-} $自由基组合形成过氧化物离子,该离子被氧化为O $ _2 $,留下2 O o $ _ $ $^{2-} $ $ $ $ $ $ $ $ $^{.-} $ udicals $ $ o $ o $ o $ ________________和2-22离子。反应解放了约。每o $ _2 $分子3 ev。单线氧的形成是由过氧化离子的单线基态引起的,旋转保护决定了$^1 $ o $ $ _2 $的优先释放,这是在激发状态下形成$^1 $ o $ _2 $所需的强烈前脉冲反应。
Ni-rich cathode materials achieve both high voltages and capacities in Li-ion batteries but are prone to structural instabilities and oxygen loss via the formation of singlet oxygen. Using ab initio molecular dynamics simulations, we observe spontaneous O$_2$ loss from the (012) surface of delithiated LiNiO$_2$, singlet oxygen forming in the process. We find that the origin of the instability lies in the pronounced oxidation of O during delithiation, i.e., O plays a central role in Ni O redox in LiNiO$_2$. For LiNiO$_2$, NiO$_2$, and the prototype rock salt NiO, density-functional theory and dynamical mean-field theory calculations based on maximally localised Wannier functions yield a Ni charge state of ca. +2, with O varying between -2 (NiO), -1.5 (LiNiO$_2$) and -1 (NiO$_2$). Predicted XAS Ni $K$ and O $K$-edge spectra are in excellent agreement with experimental XAS spectra, confirming the predicted charge states. The calculations also show that a high-voltage O $K$-edge feature at 531 eV previously assigned to lattice O-redox processes could alternatively arise from O-redox induced water intercalation and O-O dimer formation with lattice O at high states of charge. The O$_2$ surface loss route observed here consists of 2 surface O$^{.-}$ radicals combining to form a peroxide ion, which is oxidised to O$_2$, leaving behind 2 O vacancies and 2 O$^{2-}$ ions: effectively 4 O$^{.-}$ radicals disproportionate to O$_2$ and 2 O$^{2-}$ ions. The reaction liberates ca. 3 eV per O$_2$ molecule. Singlet oxygen formation is caused by the singlet ground state of the peroxide ion, with spin conservation dictating the preferential release of $^1$O$_2$, the strongly exergonic reaction providing the free energy required for the formation of $^1$O$_2$ in its excited state.