论文标题
多访问:使用Pinterest上多个两部分图的网络尺度推荐系统
MultiBiSage: A Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest
论文作者
论文摘要
图形卷积网络(GCN)可以有效地整合图形结构和节点特征,以学习高质量的节点嵌入。然后,这些嵌入可以用于多个任务,例如建议和搜索。在Pinterest,我们开发了Pinsage并部署了Pinsage,这是一种数据效率的GCN,可以从PIN-Board Graph学习PIN嵌入。 PIN板图包含PIN和板实体,该图捕获了PIN属于板相互作用。但是,在Pinterest上存在几个实体,例如用户,思想引脚,创建者,并且这些实体之间存在异质的相互作用,例如添加到卡特,跟随,长点击。 在这项工作中,我们表明,捕获这些多样化相互作用的图表上的训练深度学习模型将导致学习更高质量的销钉嵌入,而不是仅在PIN-Board图上训练Pinsage。为此,我们通过多个两部分图对不同的实体及其多样化的相互作用进行了建模,并提出了一种新型的数据效率多局模型。多段可以捕获多个两部分图的图形结构,以学习高质量的引脚嵌入。我们采用这种务实的方法,因为它允许我们利用Pinterest上开发的现有基础架构 - 例如Pixie系统,可以在数十亿节点图上进行优化的随机步行以及现有的培训和部署工作流程。我们在包括我们的针板图(包括针板图)的六个两分图上训练多次介绍。我们的离线指标表明,多段极大地超过了在多个用户参与度量标准上已部署的最新版本的pinsage。
Graph Convolutional Networks (GCN) can efficiently integrate graph structure and node features to learn high-quality node embeddings. These embeddings can then be used for several tasks such as recommendation and search. At Pinterest, we have developed and deployed PinSage, a data-efficient GCN that learns pin embeddings from the Pin-Board graph. The Pin-Board graph contains pin and board entities and the graph captures the pin belongs to a board interaction. However, there exist several entities at Pinterest such as users, idea pins, creators, and there exist heterogeneous interactions among these entities such as add-to-cart, follow, long-click. In this work, we show that training deep learning models on graphs that captures these diverse interactions would result in learning higher-quality pin embeddings than training PinSage on only the Pin-Board graph. To that end, we model the diverse entities and their diverse interactions through multiple bipartite graphs and propose a novel data-efficient MultiBiSage model. MultiBiSage can capture the graph structure of multiple bipartite graphs to learn high-quality pin embeddings. We take this pragmatic approach as it allows us to utilize the existing infrastructure developed at Pinterest -- such as Pixie system that can perform optimized random-walks on billion node graphs, along with existing training and deployment workflows. We train MultiBiSage on six bipartite graphs including our Pin-Board graph. Our offline metrics show that MultiBiSage significantly outperforms the deployed latest version of PinSage on multiple user engagement metrics.