论文标题
施罗辛格动力学和波动运动的浆果阶段
Schrodinger dynamics and Berry phase of undulatory locomotion
论文作者
论文摘要
光谱模式表示在物理学的各个领域,从量子力学到流体湍流都起着至关重要的作用,但是它们尚未广泛用于表征和描述生活系统的行为动力学。在这里,我们表明,从实验实现数据中推断出的基于模式的线性模型可以提供对蠕虫,centipedes,机器人和蛇中不发光运动的准确低维描述。通过将物理对称性和已知生物学约束纳入动力学模型,我们发现形状动力学通常由模式空间中的schrodinger方程控制。有效生物物理哈密顿量及其绝热变化的特征状态使使用格拉曼(Grassmann)距离和浆果相的自然,模拟和机器人生物体中的运动行为有效分类和分化。尽管我们的分析侧重于广泛研究的一类生物物理运动现象,但基本方法将概括为其他物理或生命系统,这些系统允许允许受到几何形状约束的模式表示。
Spectral mode representations play an essential role in various areas of physics, from quantum mechanics to fluid turbulence, but they are not yet extensively used to characterize and describe the behavioral dynamics of living systems. Here, we show that mode-based linear models inferred from experimental live-imaging data can provide an accurate low-dimensional description of undulatory locomotion in worms, centipedes, robots, and snakes. By incorporating physical symmetries and known biological constraints into the dynamical model, we find that the shape dynamics are generically governed by Schrodinger equations in mode space. The eigenstates of the effective biophysical Hamiltonians and their adiabatic variations enable the efficient classification and differentiation of locomotion behaviors in natural, simulated, and robotic organisms using Grassmann distances and Berry phases. While our analysis focuses on a widely studied class of biophysical locomotion phenomena, the underlying approach generalizes to other physical or living systems that permit a mode representation subject to geometric shape constraints.