论文标题

CNN通过在补丁上学习来避免维度的诅咒

CNNs Avoid Curse of Dimensionality by Learning on Patches

论文作者

Madala, Vamshi C., Chandrasekaran, Shivkumar, Bunk, Jason

论文摘要

尽管卷积神经网络(CNN)在众多计算机视觉任务及其非凡的概括性能中取得了成功,但迄今为止,几项预测CNN的概括误差的尝试仅限于迄今为止的后验分析。解释深神经网络的概括性能的先验理论大多忽略了卷积性方面,并且没有说明为什么CNN能够在计算机视觉任务上似乎可以克服尺寸的诅咒,例如图像分类,其中图像尺寸为千分之一。我们的工作试图在CNN在图像贴片域上运行的假设来解释CNN对图像分类的概括性能。我们是我们意识到的第一批因CNN的概括误差绑定的先验错误的工作,我们在支持我们的理论的支持下介绍了定量和定性证据。我们的基于补丁的理论还提供了解释,说明了为什么数据增强技术(例如切口,cutmix和随机裁剪)有效地改善了CNN的概括误差。

Despite the success of convolutional neural networks (CNNs) in numerous computer vision tasks and their extraordinary generalization performances, several attempts to predict the generalization errors of CNNs have only been limited to a posteriori analyses thus far. A priori theories explaining the generalization performances of deep neural networks have mostly ignored the convolutionality aspect and do not specify why CNNs are able to seemingly overcome curse of dimensionality on computer vision tasks like image classification where the image dimensions are in thousands. Our work attempts to explain the generalization performance of CNNs on image classification under the hypothesis that CNNs operate on the domain of image patches. Ours is the first work we are aware of to derive an a priori error bound for the generalization error of CNNs and we present both quantitative and qualitative evidences in the support of our theory. Our patch-based theory also offers explanation for why data augmentation techniques like Cutout, CutMix and random cropping are effective in improving the generalization error of CNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源