论文标题
人类实例通过相互指导和多个实体改进
Human Instance Matting via Mutual Guidance and Multi-Instance Refinement
论文作者
论文摘要
本文介绍了一个称为“人类实例垫”(HIM)的新贴件任务,该任务要求相关模型可以自动预测每个人类实例的精确α哑光。紧密相关的技术的直接组合,即实例分割,软分割和人/常规垫子,在需要沿毛茸茸和薄的边界结构的多个实例的复杂案例中很容易失败。为了应对这些技术挑战,我们提出了一个称为Instmatt的人类实例垫子框架,其中使用了一种新颖的共同指导策略与多种固定的修补模块一起起作用,用于划定具有复杂和重叠边界的人之间的多功能关系。提出了一种称为实例垫子质量(IMQ)的新实例垫表示,该指标涉及缺乏统一且公平的评估手段,强调实例识别和垫子质量。最后,我们为评估构建了HIM基准,该基准包括合成和自然基准图像。除了对具有多个和重叠的人类实例的复杂病例的彻底实验结果外,每个界限都具有复杂的边界外,还将在一般实例垫子上提出初步结果。代码和基准可在https://github.com/nowsyn/instmatt中找到。
This paper introduces a new matting task called human instance matting (HIM), which requires the pertinent model to automatically predict a precise alpha matte for each human instance. Straightforward combination of closely related techniques, namely, instance segmentation, soft segmentation and human/conventional matting, will easily fail in complex cases requiring disentangling mingled colors belonging to multiple instances along hairy and thin boundary structures. To tackle these technical challenges, we propose a human instance matting framework, called InstMatt, where a novel mutual guidance strategy working in tandem with a multi-instance refinement module is used, for delineating multi-instance relationship among humans with complex and overlapping boundaries if present. A new instance matting metric called instance matting quality (IMQ) is proposed, which addresses the absence of a unified and fair means of evaluation emphasizing both instance recognition and matting quality. Finally, we construct a HIM benchmark for evaluation, which comprises of both synthetic and natural benchmark images. In addition to thorough experimental results on complex cases with multiple and overlapping human instances each has intricate boundaries, preliminary results are presented on general instance matting. Code and benchmark are available in https://github.com/nowsyn/InstMatt.