论文标题

关于伽马和beta分布的点估计器

On point estimators for Gamma and Beta distributions

论文作者

Papadatos, Nickos

论文摘要

令$ x_1,\ ldots,x_n $为伽马分布中的随机示例,密度$ f(x)=λ^αx^{α-1} e^{ - λx}/γ(α)$,$ x> 0 $,在$α> 0 $(形状参数)和$λ> 0 $的情况下,均为参数(cam)。主要结果表明,当且仅当$ n \ geq 4 $时,存在形状参数的最小值无偏估计器(UMVUE),即$α$;此外,仅当$ n \ geq 6 $时,它具有有限的差异。更确切地说,为所有参数函数$α$,$λ$,$ 1/α$和$ 1/λ$提供了UMVUE的形式。此外,还给出了两参数beta分布的高效估计程序。这是基于Beta分布的Stein型协方差身份,然后应用了$ U $统计学和Delta-Method的理论。 MSC:主要62F10; 62F12;中学62E15。 关键词和短语:公正的估计;伽马分布; beta分布; ye-chen型封闭式估计器;渐近效率; $ u $ - 统计; Stein型协方差身份; Delta-Method。

Let $X_1,\ldots,X_n$ be a random sample from the Gamma distribution with density $f(x)=λ^αx^{α-1}e^{-λx}/Γ(α)$, $x>0$, where both $α>0$ (the shape parameter) and $λ>0$ (the reciprocal scale parameter) are unknown. The main result shows that the uniformly minimum variance unbiased estimator (UMVUE) of the shape parameter, $α$, exists if and only if $n\geq 4$; moreover, it has finite variance if and only if $n\geq 6$. More precisely, the form of the UMVUE is given for all parametric functions $α$, $λ$, $1/α$ and $1/λ$. Furthermore, a highly efficient estimating procedure for the two-parameter Beta distribution is also given. This is based on a Stein-type covariance identity for the Beta distribution, followed by an application of the theory of $U$-statistics and the delta-method. MSC: Primary 62F10; 62F12; Secondary 62E15. Key words and phrases: unbiased estimation; Gamma distribution; Beta distribution; Ye-Chen-type closed-form estimators; asymptotic efficiency; $U$-statistics; Stein-type covariance identity; delta-method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源