论文标题

无线芯片通信,用于可扩展的内存高维度计算

Wireless On-Chip Communications for Scalable In-memory Hyperdimensional Computing

论文作者

Guirado, Robert, Rahimi, Abbas, Karunaratne, Geethan, Alarcón, Eduard, Sebastian, Abu, Abadal, Sergi

论文摘要

高维计算(HDC)是一种新兴的计算范式,它代表,操纵和传达数据使用很长的随机矢量(又称高量向量)。在能够执行HDC算法的不同硬件平台中,由于存储器本身中的HyperVector Manipulations降低了数据移动,因此最近已证明内存计算(IMC)系统是最节能的选项之一。尽管已经在单个IMC核心上实现了HDC的实现,但由于这些新型体系结构施加的沟通挑战以及芯片上的传统网络和包装网络并未为此而设计,因此仍未解决它们的并行化。为了应对这一困难,我们建议以独特的方式使用无线芯片通信技术。我们特别有兴趣在物理上分布大量的IMC核心,这些IMC核心在芯片上执行相似性搜索,并保持分类精度时,当每个IMC核心都使用捆绑的Hypervector略有不同的版本查询时。为了实现这一目标,我们引入了一种新颖的空中计算,该计算包括定义接收器中的不同二进制决策区域,以计算HDC中所需的逻辑多数操作(即捆绑或叠加)。它在IMC核心中引入了单个天线和接收器的中等开销。通过这样做,我们实现了与有线互连无法实现的性能和效率的联合广播分布和计算,这反过来又可以使体系结构进行大规模平行。证明所提出的方法允许将至少三个过度向量捆绑,并将相似性搜索缩放到64个IMC核心,而无缝的平均位误差率为0.01,而没有对基于HDC的一般分类器的准确性进行任何影响,与512位矢量一起工作。

Hyperdimensional computing (HDC) is an emerging computing paradigm that represents, manipulates, and communicates data using very long random vectors (aka hypervectors). Among different hardware platforms capable of executing HDC algorithms, in-memory computing (IMC) systems have been recently proved to be one of the most energy-efficient options, due to hypervector manipulations in the memory itself that reduces data movement. Although implementations of HDC on single IMC cores have been made, their parallelization is still unresolved due to the communication challenges that these novel architectures impose and that traditional Networks-on-Chip and Networks-in-Package were not designed for. To cope with this difficulty, we propose the use of wireless on-chip communication technology in unique ways. We are particularly interested in physically distributing a large number of IMC cores performing similarity search across a chip, and maintaining the classification accuracy when each of which is queried with a slightly different version of a bundled hypervector. To achieve it, we introduce a novel over-the-air computing that consists of defining different binary decision regions in the receivers so as to compute the logical majority operation (i.e., bundling, or superposition) required in HDC. It introduces moderate overheads of a single antenna and receiver per IMC core. By doing so, we achieve a joint broadcast distribution and computation with a performance and efficiency unattainable with wired interconnects, which in turn enables massive parallelization of the architecture. It is demonstrated that the proposed approach allows to both bundle at least three hypervectors and scale similarity search to 64 IMC cores seamlessly, while incurring an average bit error ratio of 0.01 without any impact in the accuracy of a generic HDC-based classifier working with 512-bit vectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源