论文标题
拟议校正对决策标准缓慢漂移的限制
Limitations of a proposed correction for slow drifts in decision criterion
论文作者
论文摘要
决策任务中的审判历史偏见被认为反映了决策变量的系统更新,因此其精确的性质为基础启发式策略和学习过程提供了结论。但是,决策变量中的随机漂移会通过模仿系统更新的签名来破坏这种推论。因此,确定决策变量的逐审进化需要可以牢固地解释这种漂移的方法。最近的研究(Lak'20,Mendonça'20)通过提出一种方便的方法来纠正决策标准中缓慢漂移的影响,这是一个关键的决策变量,这是在这个方向上取得了重要进步。在这里,我们将此更正应用于各种更新方案,并评估其性能。我们表明,校正因广泛假定的系统更新策略而失败,使人们的推论从狭窄的子集中扭曲了。为了解决这些局限性,我们提出了一种基于模型的方法,用于消除随机漂移的系统更新,并在真实和合成数据集上证明其成功。我们表明,这种方法准确地恢复了决策标准中漂移的潜在轨迹以及模拟数据中的生成系统更新。我们的结果为方法提供了建议,以说明历史偏见与缓慢漂移之间的相互作用,并突出显示将有关生成过程直接纳入决策模型的假设的优势。
Trial history biases in decision-making tasks are thought to reflect systematic updates of decision variables, therefore their precise nature informs conclusions about underlying heuristic strategies and learning processes. However, random drifts in decision variables can corrupt this inference by mimicking the signatures of systematic updates. Hence, identifying the trial-by-trial evolution of decision variables requires methods that can robustly account for such drifts. Recent studies (Lak'20, Mendonça'20) have made important advances in this direction, by proposing a convenient method to correct for the influence of slow drifts in decision criterion, a key decision variable. Here we apply this correction to a variety of updating scenarios, and evaluate its performance. We show that the correction fails for a wide range of commonly assumed systematic updating strategies, distorting one's inference away from the veridical strategies towards a narrow subset. To address these limitations, we propose a model-based approach for disambiguating systematic updates from random drifts, and demonstrate its success on real and synthetic datasets. We show that this approach accurately recovers the latent trajectory of drifts in decision criterion as well as the generative systematic updates from simulated data. Our results offer recommendations for methods to account for the interactions between history biases and slow drifts, and highlight the advantages of incorporating assumptions about the generative process directly into models of decision-making.