论文标题
非本地操作员内核的非参数学习
Nonparametric learning of kernels in nonlocal operators
论文作者
论文摘要
具有积分内核的非本地运算符已成为在功能空间之间设计解决方案图的流行工具,因为它们在表示长距离依赖性和解决方案不变的吸引力方面的效率。在这项工作中,我们为在非本地运营商中的内核学习提供了严格的可识别性分析和收敛研究。发现内核学习是一个不适合甚至不确定的逆问题,导致在存在建模误差或测量噪声的情况下导致估计器不同。为了解决此问题,我们提出了一种基于可识别性功能空间的新型数据自适应RKHS Tikhonov正则化方法,提出了一种非参数回归算法。该方法在合成数据集和现实世界数据集上都可以完善数据分辨率,从而产生内核的嘈杂收敛估计器。特别是,该方法成功地学习了一种在异质固体中的应力波传播的均质模型,从而揭示了微观研究中实际数据的未知管理定律。我们的正则化方法在鲁棒性,可推广性和准确性方面优于基线方法。
Nonlocal operators with integral kernels have become a popular tool for designing solution maps between function spaces, due to their efficiency in representing long-range dependence and the attractive feature of being resolution-invariant. In this work, we provide a rigorous identifiability analysis and convergence study for the learning of kernels in nonlocal operators. It is found that the kernel learning is an ill-posed or even ill-defined inverse problem, leading to divergent estimators in the presence of modeling errors or measurement noises. To resolve this issue, we propose a nonparametric regression algorithm with a novel data adaptive RKHS Tikhonov regularization method based on the function space of identifiability. The method yields a noisy-robust convergent estimator of the kernel as the data resolution refines, on both synthetic and real-world datasets. In particular, the method successfully learns a homogenized model for the stress wave propagation in a heterogeneous solid, revealing the unknown governing laws from real-world data at microscale. Our regularization method outperforms baseline methods in robustness, generalizability and accuracy.