论文标题

基于空间注意的隐式神经表示,用于任意减少MRI切片间距

Spatial Attention-based Implicit Neural Representation for Arbitrary Reduction of MRI Slice Spacing

论文作者

Wang, Xin, Wang, Sheng, Xiong, Honglin, Xuan, Kai, Zhuang, Zixu, Liu, Mengjun, Shen, Zhenrong, Zhao, Xiangyu, Zhang, Lichi, Wang, Qian

论文摘要

在2D临床方案中收集的磁共振(MR)图像通常具有较大的切片间间距,从而导致平面内分辨率高并减少平面分辨率。超分辨率技术可以增强MR图像的平面分辨率,以促进下游可视化和计算机辅助诊断。但是,大多数现有作品都以固定缩放系数训练超分辨率网络,这与MR扫描中不同套件间距不同的临床场景不友好。受隐式神经表示的最新进展的启发,我们提出了一个基于空间注意的隐式神经表示(SA-INR)网络,以任意减少MR间距间距。 SA-INR的目的是将MR图像表示为3D坐标的连续隐式函数。这样,SA-INR可以通过在3D空间中连续采样坐标来重建MR图像。特别是,在较大的接受场中,将局部感知的空间注意操作引入附近的体素及其亲和力。同时,为了提高计算效率,提出了梯度引导的门口罩,以将局部感知的空间注意仅应用于选定区域。我们在公共HCP-1200数据集和临床膝盖MR数据集上评估了我们的方法,以证明其优于其他现有方法。

Magnetic resonance (MR) images collected in 2D clinical protocols typically have large inter-slice spacing, resulting in high in-plane resolution and reduced through-plane resolution. Super-resolution technique can enhance the through-plane resolution of MR images to facilitate downstream visualization and computer-aided diagnosis. However, most existing works train the super-resolution network at a fixed scaling factor, which is not friendly to clinical scenes of varying inter-slice spacing in MR scanning. Inspired by the recent progress in implicit neural representation, we propose a Spatial Attention-based Implicit Neural Representation (SA-INR) network for arbitrary reduction of MR inter-slice spacing. The SA-INR aims to represent an MR image as a continuous implicit function of 3D coordinates. In this way, the SA-INR can reconstruct the MR image with arbitrary inter-slice spacing by continuously sampling the coordinates in 3D space. In particular, a local-aware spatial attention operation is introduced to model nearby voxels and their affinity more accurately in a larger receptive field. Meanwhile, to improve the computational efficiency, a gradient-guided gating mask is proposed for applying the local-aware spatial attention to selected areas only. We evaluate our method on the public HCP-1200 dataset and the clinical knee MR dataset to demonstrate its superiority over other existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源