论文标题

优化瞬态气体网络控制,以使用基于MIP的启发式方法来挑战实际实例

Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics

论文作者

Hennings, Felix, Hoppmann-Baum, Kai, Zittel, Janina

论文摘要

优化气体网络的瞬态控制是一项高度挑战的任务。相应的模型结合了确定许多活性元素的设置以及气体运输物理和技术原理的非线性和非凸性性质的组合复杂性。在本文中,我们介绍了正在进行的工作的最新改进,以解决现实世界中的大规模问题实例:通过调整有关网络中气体压缩功能的混合智能非线性编程模型,我们反映了基础单元的技术限制,同时保持相似的整体模型大小。此外,我们引入了一种新的算法方法,该方法基于首先找到离散变量的分配,然后确定连续变量作为相应非线性程序的本地最佳解决方案,该方法基于分解问题的复杂性。对于第一个任务,我们根据概念设计了多种不同的启发式方法,用于一般时间扩展的优化问题,这些问题通过求解在减少时间范围内定义的一系列子问题来找到解决方案。为了证明我们的方法的竞争力,我们在特别具有挑战性的历史需求方案上测试算法。结果表明,高质量的解决方案是在短期解决的时间内可靠地获得的,这使得算法非常适合用于时间关键时期工业应用的核心。

Optimizing the transient control of gas networks is a highly challenging task. The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport. In this paper, we present the latest improvements of our ongoing work to solve this problem for real-world, large-scale problem instances: By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size. In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program. For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons. To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historic demand scenarios. The results show that high-quality solutions are obtained reliably within short solving times, making the algorithm well-suited to be applied at the core of time-critical industrial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源