论文标题

在模块化曲线上的相对双重捆的自我讲道x(n)

Self-intersection of the relative dualizing sheaf on modular curves X(N)

论文作者

Grados, Miguel, von Pippich, Anna-Maria

论文摘要

令$ n \ geq 3 $为复合,奇数和无方整数,让$γ$成为$ n $的主要一致性子组。令$ x(n)$为与$γ$相关的$g_γ$的模块化曲线。在本文中,我们研究了Arakelov不变性$ e(γ)= \barΩ^2/φ(n)$,并带有$ \barΩ^2 $,以$ x(n)$的最低规则型号的相对双重化的自身解干,配备了Arakelov衡量标准的$ x(n)$,并带有ArakeLov衡量标准,$ n)$(N)$(N)$ um phi eulerererererereres's phi功能。我们的主要结果是渐近学$ e(γ)=2G_γ\ log(n) + o(g_γ\ log(n))$,因为$ n $倾向于无穷大。

Let $N\geq 3$ be a composite, odd, and square-free integer and let $Γ$ be the principal congruence subgroup of level $N$. Let $X(N)$ be the modular curve of genus $g_Γ$ associated to $Γ$. In this article, we study the Arakelov invariant $e(Γ)=\barω^2/φ(N)$, with $\barω^2$ denoting the self-intersection of the relative dualizing sheaf for the minimal regular model of $X(N)$, equipped with the Arakelov metric, and $φ(N)$ is the Euler's phi function. Our main result is the asymptotics $e(Γ) = 2g_Γ\log(N) + o(g_Γ\log(N))$, as the level $N$ tends to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源