论文标题

尺寸二和三的球形对象

Spherical objects in dimensions two and three

论文作者

Hara, Wahei, Wemyss, Michael

论文摘要

本文在第二和第三的各个几何环境中对球形对象进行了分类,包括克莱琳奇异性的最小和部分毛虫的分辨率,以及仅与戈伦斯坦终端单身性的任意flops掉的3倍收缩。主要结果更为笼统:在每种情况下,我们证明,没有负分组的相关零类别中的所有对象是在适当的辫子或纯辫子组的作用下的图像,这些对象是有界T结构的核心中某些对象的图像。推论的是,所有接纳不负分的对象,而自我空间为一维的对象都是类似的图像。该参数的一种变化进一步进行,并分类所有有限的T结构。有多种几何,拓扑和代数后果,主要用于自动等量和稳定条件。我们的主要新技术也扩展到表示理论,我们确定在有限维数代数的派生类别中,该代数是离散的,每个无负ext组的对象都位于有限的T结构的核心。结果,每个半复杂的综合体都可以完成到一个简单的思想收藏。

This paper classifies spherical objects in various geometric settings in dimensions two and three, including both minimal and partial crepant resolutions of Kleinian singularities, as well as arbitrary flopping 3-fold contractions with only Gorenstein terminal singularities. The main result is much more general: in each such setting, we prove that all objects in the associated null category with no negative Ext groups are the image, under the action of an appropriate braid or pure braid group, of some object in the heart of a bounded t-structure. The corollary is that all objects which admit no negative Exts, and for which the self-Hom space is one dimensional, are the images of the simples. A variation on this argument goes further, and classifies all bounded t-structures. There are multiple geometric, topological and algebraic consequences, primarily to autoequivalences and stability conditions. Our main new technique also extends into representation theory, and we establish that in the derived category of a finite dimensional algebra which is silting discrete, every object with no negative Ext groups lies in the heart of a bounded t-structure. As a consequence, every semibrick complex can be completed to a simple minded collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源