论文标题

重新定义了近来的校正,以使希格斯玻色子的速度分布到$ \ textbf {nnlo} + \ edline {\ textbf {nnll}} $

Resummed next-to-soft corrections to rapidity distribution of Higgs Boson to $ \textbf{NNLO} + \overline{\textbf{NNLL} } $

论文作者

Ravindran, V., Sankar, Aparna, Tiwari, Surabhi

论文摘要

我们介绍了恢复的预测,包括软性虚拟(SV)以及近代到SV(NSV)阈值对数,以扰动QCD的所有订单,用于Higgs Boson的快速分布,直到$ \ rm NNLO + \ rm nnlo + \ \ \ \ \ \ \ \ \\ + + + + edline {nnll} $精度。使用我们最近的形式主义\ cite {ajjat​​h:2020lwb},通过仅限制对角$ gg $ channel的NSV贡献,在双Mellin空间中进行重新召开。我们使用最小的处方过程执行逆梅林反变形,并与相应的固定顺序结果匹配。我们详细分析了重新汇总结果的数值影响。不同对数精度的K因子值表明,速度分布的预测会收敛,并在$ \ rm nnlo + \ edline {nnll} $ order时变得更可靠。我们进一步观察到,恢复的NSV贡献的包含可以改善扰动理论中每个顺序的重新范围量表不确定性。但是,由于固定阶速度分布中的重新召集的SV+NSV预测,由于分解量表引起的不确定性增加。

We present the resumed predictions consisting of both soft-virtual(SV) as well as next-to-SV(NSV) threshold logarithms to all orders in perturbative QCD for the rapidity distribution of Higgs Boson till $\rm NNLO + \overline{NNLL}$ accuracy at LHC. Using our recent formalism\cite{Ajjath:2020lwb}, the resummation is carried out in the double Mellin space by restricting the NSV contributions only from diagonal $gg$ channel. We perform the inverse Mellin ransformation using the minimal prescription procedure and match it with the corresponding fixed order results. We do a detailed analysis of the numerical impact of the resummed result. The K-factor values at different logarithmic accuracy suggest that the prediction for the rapidity distribution converges and becomes more reliable at $\rm NNLO + \overline{NNLL}$ order. We further observed that the inclusion of resumed NSV contribution improves the renormalisation scale uncertainty at every order in perturbation theory. However, the uncertainty due to factorisation scale increases by the addition of resummed SV+NSV predictions to the fixed order rapidity distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源