论文标题

量子耗散系统的热力学定律:准平衡Helmholtz能量方法

The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach

论文作者

Koyanagi, Shoki, Tanimura, Yoshitaka

论文摘要

使用准静态的准平衡Helmholtz Energy(QHE),定义为准静态过程中的热力学工作,我们研究了等温过程和绝热和等温态之间的过渡过程(绝热过渡)之间的热特性。在这里,这项工作是由能量从稳态变为另一个状态的变化来定义的。特别是,准静态变化的工作被视为热力学工作。我们采用了一个系统模型,该模型涉及系统和系统 - 托管相互作用的时间依赖性扰动。我们为三冲程加热机(开尔文 - 普兰克周期)进行数值实验。为此,我们采用了运动层次方程(HEOM)方法。这些实验涉及绝热过渡场,描述了系统和浴室之间绝热壁的运行。引入了热力学 - 外部磁场及其共轭变量的图表,类似于$ p $ - $ v $图,以分析周期中为系统完成的工作。我们发现,该机器的热力学效率为零,因为等温过程的场充当冰箱,而对于绝热壁来说是加热发动机。这是kelvin-planck语句的数值表现,该声明指出,不可能从单个热源中得出机械效应。这些HEOM模拟是对热力学制剂的严格测试,因为仅当对绝热壁运行的工作进行准确处理时,热力学的第二定律才有效。

Using the quasi-equilibrium Helmholtz energy (qHE), defined as the thermodynamic work in a quasi-static process, we investigate the thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states (adiabatic transition). Here, the work is defined by the change in energy from a steady-state to another state under a time-dependent perturbation. In particular, the work for a quasi-static change is regarded as thermodynamic work. We employ a system--bath model that involves time-dependent perturbations in both the system and the system--bath interaction. We conduct numerical experiments for a three-stroke heat machine (a Kelvin-Planck cycle). For this purpose, we employ the hierarchical equations of motion (HEOM) approach. These experiments involve an adiabatic transition field that describes the operation of an adiabatic wall between the system and the bath. Thermodynamic--work diagrams for external fields and their conjugate variables, similar to the $P$--$V$ diagram, are introduced to analyze the work done for the system in the cycle. We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator, whereas that for the adiabatic wall acts as a heat engine. This is a numerical manifestation of the Kelvin--Planck statement, which states that it is impossible to derive mechanical effects from a single heat source. These HEOM simulations serve as a rigorous test of thermodynamic formulations because the second law of thermodynamics is only valid when the work involved in the operation of the adiabatic wall is treated accurately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源