论文标题

通过组合映射和变异状态制备在量子计算机上紧凑的分子模拟

Compact Molecular Simulation on Quantum Computers via Combinatorial Mapping and Variational State Preparation

论文作者

Chamaki, Diana, Metcalf, Mekena, de Jong, Wibe A.

论文摘要

费米子哈密顿量的紧凑表示需要对缺乏误差校正的量子计算机进行计算。通常在固定颗粒数的子空间和旋转的子空间内定义一个费米子系统,而不必要的状态则在希尔伯特空间中投射出来。我们使用组合排名提供了一个射击映射,以将射出的射箭基础状态绘制为Qubit基础状态,并在标准旋转表示中表达操作员。然后,我们使用统一耦合群集单打和双重激发(UCCSD)ANSATZ在紧凑的表示中评估紧凑型映射(VQE)。当轨道填充远离一半时,紧凑性是有益的,我们以30个旋转轨道$ h_ {2} $计算,只有8量QUB。我们发现,准备紧凑型波函数所需的栅极深度并不比实践中的完整配置空间大得多。与完整模拟相比,一个值得注意的观察是紧凑型模拟所需的优化器的呼叫数量。我们发现,在所有情况下,使用ADAM优化器使用ADAM Optimizer比完整表示的收敛速度更快。我们的分析证明了实践中紧凑型映射的效果。

Compact representations of fermionic Hamiltonians are necessary to perform calculations on quantum computers that lack error-correction. A fermionic system is typically defined within a subspace of fixed particle number and spin while unnecessary states are projected out of the Hilbert space. We provide a bijective mapping using combinatoric ranking to bijectively map fermion basis states to qubit basis states and express operators in the standard spin representation. We then evaluate compact mapping using the Variational Quantum Eigensolver (VQE) with the unitary coupled cluster singles and doubles excitations (UCCSD) ansatz in the compact representation. Compactness is beneficial when the orbital filling is well away from half, and we show at 30 spin orbital $H_{2}$ calculation with only 8 qubits. We find that the gate depth needed to prepare the compact wavefunction is not much greater than the full configuration space in practice. A notable observation regards the number of calls to the optimizer needed for the compact simulation compared to the full simulation. We find that the compact representation converges faster than the full representation using the ADAM optimizer in all cases. Our analysis demonstrates the effect of compact mapping in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源